Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 25(2): 226-239, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191855

ABSTRACT

Sepsis is a systemic response to infection with life-threatening consequences. Our understanding of the molecular and cellular impact of sepsis across organs remains rudimentary. Here, we characterize the pathogenesis of sepsis by measuring dynamic changes in gene expression across organs. To pinpoint molecules controlling organ states in sepsis, we compare the effects of sepsis on organ gene expression to those of 6 singles and 15 pairs of recombinant cytokines. Strikingly, we find that the pairwise effects of tumor necrosis factor plus interleukin (IL)-18, interferon-gamma or IL-1ß suffice to mirror the impact of sepsis across tissues. Mechanistically, we map the cellular effects of sepsis and cytokines by computing changes in the abundance of 195 cell types across 9 organs, which we validate by whole-mouse spatial profiling. Our work decodes the cytokine cacophony in sepsis into a pairwise cytokine message capturing the gene, cell and tissue responses of the host to the disease.


Subject(s)
Cytokines , Sepsis , Mice , Animals , Interleukin-6/genetics , Tumor Necrosis Factor-alpha/metabolism , Interferon-gamma , Sepsis/genetics
2.
bioRxiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36778287

ABSTRACT

Sepsis is a systemic response to infection with life-threatening consequences. Our understanding of the impact of sepsis across organs of the body is rudimentary. Here, using mouse models of sepsis, we generate a dynamic, organism-wide map of the pathogenesis of the disease, revealing the spatiotemporal patterns of the effects of sepsis across tissues. These data revealed two interorgan mechanisms key in sepsis. First, we discover a simplifying principle in the systemic behavior of the cytokine network during sepsis, whereby a hierarchical cytokine circuit arising from the pairwise effects of TNF plus IL-18, IFN-γ, or IL-1ß explains half of all the cellular effects of sepsis on 195 cell types across 9 organs. Second, we find that the secreted phospholipase PLA2G5 mediates hemolysis in blood, contributing to organ failure during sepsis. These results provide fundamental insights to help build a unifying mechanistic framework for the pathophysiological effects of sepsis on the body.

3.
Metallomics ; 13(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34718709

ABSTRACT

Ribonucleotide reductase (RNR) is an essential enzyme found in all organisms. The function of RNR is to catalyze the conversion of nucleotides to deoxynucleotides. RNRs rely on metallocofactors to oxidize a conserved cysteine in the active site of the enzyme into a thiyl radical, which then initiates nucleotide reduction. The proteins required for MnIII2-Y• cluster formation in class Ib RNRs are NrdF (ß-subunit) and NrdI (flavodoxin). An oxidant is channeled from the FMN cofactor in NrdI to the dimanganese center in NrdF, where it oxidizes the dimanganese center and a tyrosyl radical (Y•) is formed. Both Streptococcus sanguinis and Escherichia coli MnII2-NrdF structures have a constriction in the channel immediately above the metal site. In E. coli, the constriction is formed by the side chain of S159, whereas in the S. sanguinis system it involves T158. This serine-to-threonine substitution was investigated using S. sanguinis and Streptococcus pneumoniae class Ib RNRs but it is also present in other pathogenic streptococci. Using stopped-flow kinetics, we investigate the role of this substitution in the mechanism of MnIII2-Y• cluster formation. In addition to different kinetics observed in the studied streptococci, we found that affinity constants of NrdF for MnII and FeII are about 1 µM and the previously reported preference for MnII could not be explained by affinity only.


Subject(s)
Ferrous Compounds/metabolism , Manganese/metabolism , Ribonucleotide Reductases/metabolism , Catalytic Domain , Escherichia coli/metabolism , Kinetics , Streptococcus pneumoniae/metabolism , Streptococcus sanguis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...