Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Microb Sci ; 4: 100193, 2023.
Article in English | MEDLINE | ID: mdl-37293250

ABSTRACT

Bacillus cabrialesii TE3T is a strictly aerobic and Gram-stain-positive plant growth-promoting bacterium, motile and catalase-positive. In addition, strain TE3T was also recently described as a biological control agent. Here, we present the complete circularized genome of this type strain, as well as a whole genome analysis identifying genes of agricultural interest. Thus, a hybrid assembly method was performed using short-read sequencing through the Illumina MiSeq platform, and long-read sequencing through the MinION sequencing technology by Oxford Nanopore Technology (ONT). This assembly method showed a closed circular chromosome of 4,125,766 bp and 44.2% G + C content. The strain TE3T genome annotation, based on the RAST platform, presented 4,282 Coding DNA sequences (CDS) distributed in 335 subsystems, from which 4 CDS are related to the promotion of plant growth and 28 CDS to biological control. Also, Prokka (Rapid Prokaryotic Genome Annotation) predicted a total of 119 RNAs composed of 87 tRNAs, 31 rRNA, and 1 tmRNA; and the PGAP (Prokaryotic Genome Annotation Pipeline) predicted a total of 4,212 genes (3,991 CDS). Additionally, seven putative biosynthetic gene clusters were identified by antiSMASH, such as Fengycin, Bacilysin, Subtilosin A, Bacillibactin, Bacillaene, Surfactin, and Rizocticin A, which are related to antimicrobial and antifungal properties, whose gene presence was further supported by the Prokaryotic Genome Annotation Pipeline (PGAP) annotation. Thus, the complete genome of Bacillus cabrialesii TE3T showed promising bioactivities for the use of this type strain to bioformulate bacterial inoculants for sustainable agriculture.

2.
Folia Microbiol (Praha) ; 65(5): 835-847, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32410069

ABSTRACT

Halophilic bacterias from saline soil from former Lake Texcoco were isolated, identified based on 16 rRNA and tested to produce glucolytic, nucleolytic, proteolytic and lipolytic exoenzymes. The Bacillus, Virgibacillus, Kocuria, Salinicoccus, Gracilibacillus, Halobacillus, Tenuibacillus and Nesterekonia genera where identified. Lipase/eserases and proteases from Nesterenkonia sp. and Nesterenkonia aethiopica showed halotolerant characteristics and were selected to synthesize the oleochemical n-butyl oleate and antioxidant peptides from muscle protein of common carp (Cyprinus carpio), respectively. In organic media (2,2,4-Trimethylpentane), the lipase/esterases from Nesterenkonia sp. (0.6 U/mL) and N. aethiopica (1.2 U/mL) achieved a 62.7% and 53.2% of n-butyl oleate conversion, respectively. The protein hydrolysis from muscle of common carp (C. carpio) showed a degree of hydrolysis of 4.5 ± 0.2% and 2.8 ± 0.1% when proteases from Nesterenkonia sp. and N. aethiopica were used, respectively. Three peptidic fractions ranging molecular masses between 254 and 1002 Da [M + H] show antioxidant scavenging activity, and the principal fraction with a peptide of 547.3 Da [M + H] showed an inhibition of 37.7 ± 1.8% and 16.3 ± 0.6%, when 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) were used, respectively. These findings showed that the enzymatic battery of the halophilic bacteria from former lake Texcoco can be used in hydrolysis and synthesis of molecules with applications in different fields as food technology or bioenergy.


Subject(s)
Antioxidants/metabolism , Bacteria/classification , Bacteria/metabolism , Oleic Acids/metabolism , Salt Tolerance , Animals , Antioxidants/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/metabolism , Carps/metabolism , Esterases/metabolism , Hydrolysis , Lakes , Lipase/metabolism , Peptide Hydrolases/metabolism , Peptides/chemistry , Peptides/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil Microbiology
3.
Molecules ; 23(12)2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30518166

ABSTRACT

Plum edible part was used to obtained extracts by during a 4 h maceration process using three different solvents (ethanol, methanol and water) for the determination of total phenols and flavonoids, antioxidant capacity by (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hemolysis inhibition in human blood assays. Subsequently, phenolic compounds were identified using ultra-performance liquid chromatography (UPLC-MS). The results indicated that the ethanolic extract of plum fruit being a good source of phenolic (12⁻18 mg GAE/g FW) and flavonoids (2.3⁻2.5 mg QE/g FW) content in both varieties of plum. Also, the fruits proved a good source of antioxidants as measured by DPPH and ABTS; likewise, plum aqueous extracts showed the highest protective effect on human erythrocytes with 74.34 and 64.62% for yellow and red plum, respectively. A total of 23 bioactive compounds were identified by UPLC-MS, including gallic acid, rutin, resorcinol, chlorogenic acid, catechin, and ellagic acid, and the antioxidant capacity can be attributed to these species. The edible part of plum contains compounds of biological interest, suggesting that this fruit has antioxidant potential that can be exploited for various technologies.


Subject(s)
Antioxidants , Biphenyl Compounds , Erythrocytes/drug effects , Phenols , Picrates , Prunus domestica/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Benzothiazoles/chemistry , Biphenyl Compounds/pharmacology , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/pharmacology , Chromatography, High Pressure Liquid , Erythrocytes/metabolism , Gallic Acid/isolation & purification , Gallic Acid/pharmacology , Humans , Phenols/isolation & purification , Phenols/pharmacology , Picrates/pharmacology , Rutin/isolation & purification , Rutin/pharmacology , Spectrometry, Mass, Electrospray Ionization
4.
Int J Environ Health Res ; 26(4): 396-404, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26813880

ABSTRACT

The haloalkaliphilic bacterium Kocuria sp. (HJ014) has the ability to produce extracellular amylase. The aim of this study was to purify and characterize this protein. The amylase enzyme with a specific activity of 753,502 U/mg was purified 5.7- fold using Sepharose 4B and Sephacryl S-300 gel filtration columns. The molecular weight of the enzyme was 45,000 Da as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The amylase showed maximum activity at pH 9 and 50°C in the presence of 3.5 M NaCl. The Km was 3.0 mg/ml and Vmax 90.09 U/ml. It was found that extracellular amylase from Kocuria sp. has a high industrial potential.


Subject(s)
Amylases/isolation & purification , Micrococcaceae/enzymology , Amylases/chemistry , Electrophoresis, Polyacrylamide Gel , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...