Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 129: 106205, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36265354

ABSTRACT

Novel ethyl-4-(aryl)-6-methyl-2-(oxo/thio)-3,4-dihydro-1H-pyrimidine-5-carboxylates were synthesized from one-pot, three-component Biginelli reaction of aryl aldehydes, ethyl acetoacetate and urea/ thiourea by catalytic action of silica supported Bismuth(III) triflate, a Lewis acid. All the synthesized compounds were structurally characterized by spectral (IR, 1H NMR & 13C NMR spectroscopic and Mass spectrometric) and elemental (C, H & N) analyses. The present protocol has deserved novel as, formed the products in high yields with short reaction times, involved eco-friendly methodology and reusable heterogeneous Lewis acid catalyst. The title compounds were screened for in vitro DPPH free radical scavenging antioxidant activity and identified 4i, 4j, 4h & 4f as potential antioxidants. The obtained in vitro results were correlated with molecular docking, ADMET, QSAR, Bioactivity & toxicity risk studies and molecular finger print properties and found that in silico binding affinities were identified in good correlation with in vitro antioxidant activity and studied the structure activity relationship. The molecular docking study has disclosed strong hydrogen bonding interactions of title compounds with aspartic acid (ASP197) aminoacid residue of 2HCK, a complex enzyme of haematopoietic cell kinase and quercetin. Results of toxicology study evaluated for potential risks of compounds have revealed title compounds as safer drugs. In ultimate the study has established ligand's antioxidant potentiality as they effectively binds with ASP197 amino acid of Chain A hence confirms the inhibition of growth of reactive oxygen species in vivo. In addition, the title compounds have been identified as potential blood-brain barrier penetrable entities and efficient central nervous system (CNS) active neuro-protective antioxidant agents.


Subject(s)
Antioxidants , Bismuth , Carboxylic Acids , Antioxidants/pharmacology , Antioxidants/chemistry , Bismuth/chemistry , Catalysis , Lewis Acids , Molecular Docking Simulation , Molecular Structure , Pyrimidines/chemistry , Silicon Dioxide/chemistry , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Caco-2 Cells , Humans
2.
ACS Omega ; 6(17): 11375-11388, 2021 May 04.
Article in English | MEDLINE | ID: mdl-34056293

ABSTRACT

A series of 3-amino-2-hydroxybenzofused 2-phosphalactones (4a-l) has been synthesized from the Kabachnik-Fields reaction via a facile route from a one-pot three-component reaction of diphenylphosphite with various 2-hydroxybenzaldehyes and heterocyclic amines in a new way of expansion. The in vitro anti-cell proliferation studies by MTT assay have revealed them as potential Panc-1, Miapaca-2, and BxPC-3 pancreatic cell growth inhibitors, and the same is supported by molecular docking, QSAR, and ADMET studies. The MTT assay of their SAHA derivatives against the same cell lines evidenced them as potential HDAC inhibitors and identified 4a, 4b, and 4k substituted with 1,3-thiazol, 1,3,4-thiadiazol, and 5-sulfanyl-1,3,4-thiadiazol moieties on phenyl and diethylamino phenyl rings as potential ones. Additionally, the flow cytometric analyses of 4a, 4b, and 4k against BxPC-3 cells revealed compound 4k as a lead compound that arrests the S phase cell cycle growth at low micromolar concentrations. The ADMET properties have ascertained their inherent pharmacokinetic potentiality, and the wholesome results prompted us to report it as the first study on anti-pancreatic cancer activity of cyclic α-aminophosphonates. Ultimately, this study serves as a good contribution to update the existing knowledge on the anticancer organophosphorus heterocyclic compounds and elevates the scope for generation of new anticancer drugs. Further, the studies like QSAR, drug properties, toxicity risks, and bioactivity scores predicted for them have ascertained the synthesized compounds as newer and potential drug candidates. Hence, this study had augmented the array of α-aminophosphonates by adding a new collection of 3-amino-2-hydroxybenzofused 2-phosphalactones, a class of cyclic α-aminophosphonates, to it, which proved them as potential anti-pancreatic cancer agents.

3.
ACS Omega ; 6(4): 2934-2948, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33553912

ABSTRACT

A series of novel α-furfuryl-2-alkylaminophosphonates have been efficiently synthesized from the one-pot three-component classical Kabachnik-Fields reaction in a green chemical approach by addition of an in situ generated dialkylphosphite to Schiff's base of aldehydes and amines by using environmental and eco-friendly silica gel supported iodine as a catalyst by microwave irradiation. The advantage of this protocol is simplicity in experimental procedures and products were resulted in high isolated yields. The synthesized α-furfuryl-2-alkylaminophosphonates were screened to in vitro antioxidant and plant growth regulatory activities and some are found to be potent with antioxidant and plant growth regulatory activities. These in vitro studies have been further supported by ADMET (absorption, distribution, metabolism, excretion, and toxicity), quantitative structure-activity relationship, molecular docking, and bioactivity studies and identified that they were potentially bound to the GLN340 amino acid residue in chain C of 1DNU protein and TYR597 amino acid residue in chain A of 4M7E protein, causing potential exhibition of antioxidant and plant growth regulatory activities. Eventually, title compounds are identified as good blood-brain barrier (BBB)-penetrable compounds and are considered as proficient central nervous system active and neuroprotective antioxidant agents as the neuroprotective property is determined with BBB penetration thresholds.

4.
Bioorg Chem ; 109: 104718, 2021 04.
Article in English | MEDLINE | ID: mdl-33618257

ABSTRACT

An efficient method for the synthesis of a new class of α-aminophosphonates of imatinib derivative has been developed in one-pot Kabachnik-Fields reaction of N-(5-amino-2-methyl phenyl)-4-(3-pyridyl)-2-pyrimidine amine with various aldehydes and diethyl phosphite under microwave irradiation and neat conditions using NiO nanoparticles as an reusable and heterogeneous catalyst, with 96% yield at 450 W within 15 min. All the compounds were evaluated for their in vitro cytotoxicity with various cancer cell lines by MTT assay method. Compounds with halo (4f, -4Br, IC50 = 1.068 ± 0.88 µM to 2.033 ± 0.97 µM), nitro substitution (4 h, -3NO2, IC50 = 1.380 ± 0.94 µM to 2.213 ± 0.64 µM), (4 g, -4NO2, IC50 = 1.402 ± 0.79 µM to 2.335 ± 0.73 µM) and (4i, 4-Cl, 3-NO2, IC50 = 1.437 ± 0.92 µM to 2.558 ± 0.76 µM) were showed better anticancer activity when compared with standard drugs Doxorubicin and Imatinib using MTT assay method. Further in silico target hunting reveals the anticancer activity of the designed compounds by inhibiting human ABL tyrosine kinase and all the designed compounds have shown significant drug-like characteristics.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Imatinib Mesylate/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Antineoplastic Agents/pharmacokinetics , Doxorubicin/pharmacology , Humans , Imatinib Mesylate/metabolism , Inhibitory Concentration 50 , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Conformation , Proto-Oncogene Proteins c-abl
5.
Bioorg Chem ; 87: 465-473, 2019 06.
Article in English | MEDLINE | ID: mdl-30927587

ABSTRACT

An efficient and convenient Meglumine catalyzed procedure for the synthesis of bis(indolyl) methanes at ambient temperature under aqueous conditions in high yields. The catalytic reaction proceeds very smoothly. Clean reaction, ease of product isolation/purification, easily available reactants, metal free and environmentally friendly reaction conditions are the notable advantages of the present methodology. All the entitled compounds were characterized by IR, 1H, 13C NMR, mass spectra and evaluated for their antioxidant (DPPH, H2O2 and NO scavenging methods). They exhibited potent in vitro antioxidant activity dose-dependently. The binding interactions and molecular docking studies for entitled compounds were studied against 3MNG protein. 4d exhibited marked binding affinity with excellent docking score of -7.6 K.cal/mol and emerged as a lead compound.


Subject(s)
Antioxidants/pharmacology , Indoles/pharmacology , Meglumine/chemistry , Methane/pharmacology , Molecular Docking Simulation , Antioxidants/chemical synthesis , Antioxidants/chemistry , Benzothiazoles/antagonists & inhibitors , Catalysis , Dose-Response Relationship, Drug , Humans , Hydrogen Peroxide/antagonists & inhibitors , Indoles/chemistry , Methane/analogs & derivatives , Methane/chemistry , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Structure-Activity Relationship , Sulfonic Acids/antagonists & inhibitors
6.
Arch Pharm (Weinheim) ; 346(9): 667-76, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23959690

ABSTRACT

Syntheses of a new series of biologically potent α-aminophosphonates were accomplished by one-pot Kabachnik-Fields reaction using TiO2-SiO2 as solid supported catalyst under microwave irradiation conditions. The chemical structures of all the newly synthesized compounds were confirmed by analytical and spectral (IR, 1H, 13C, 31P NMR, and mass) data. Their anticancer nature was evaluated by screening the in vitro activity on two human cancer cell lines, HeLa and SK-BR-3. Compounds 4i and 4o showed the best activity on these cancer cells even though the majority of the compounds, and particularly 4l and 4p, have good cytotoxic activity against them.


Subject(s)
Antineoplastic Agents/pharmacology , Green Chemistry Technology/methods , Organophosphonates/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Female , HeLa Cells , Humans , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Silicon Dioxide/chemistry , Structure-Activity Relationship , Titanium/chemistry
7.
Chem Pharm Bull (Tokyo) ; 60(1): 104-9, 2012.
Article in English | MEDLINE | ID: mdl-22223381

ABSTRACT

A green and efficient preparation method for the amino bisphosphonates is accomplished by simple mixing and stirring of diethylphosphite, triethylorthoformate and various amines in the presence of amberlyst-15 as catalyst at room temperature under solvent free conditions. The title compounds are characterized by IR, (1)H-, (13)C-, (31)P-NMR and mass spectra, also studied their antimicrobial and antioxidant activity.


Subject(s)
Anti-Infective Agents , Antioxidants , Bacteria/drug effects , Diphosphonates/chemistry , Diphosphonates/pharmacology , Fungi/drug effects , Amines/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Catalysis , Diphosphonates/chemical synthesis , Formates/chemistry , Microbial Sensitivity Tests , Phosphites/chemistry , Styrenes/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...