Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
bioRxiv ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37425865

ABSTRACT

Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to elicit immune responses against the conserved fusion peptide. Antibody specificities and GC responses were tracked longitudinally using electron microscopy polyclonal epitope mapping (EMPEM) and lymph node fine-needle aspirates, respectively. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design.

3.
Nature ; 609(7929): 998-1004, 2022 09.
Article in English | MEDLINE | ID: mdl-36131022

ABSTRACT

Germinal centres are the engines of antibody evolution. Here, using human immunodeficiency virus (HIV) Env protein immunogen priming in rhesus monkeys followed by a long period without further immunization, we demonstrate germinal centre B (BGC) cells that last for at least 6 months. A 186-fold increase in BGC cells was present by week 10 compared with conventional immunization. Single-cell transcriptional profiling showed that both light- and dark-zone germinal centre states were sustained. Antibody somatic hypermutation of BGC cells continued to accumulate throughout the 29-week priming period, with evidence of selective pressure. Env-binding BGC cells were still 49-fold above baseline at 29 weeks, which suggests that they could remain active for even longer periods of time. High titres of HIV-neutralizing antibodies were generated after a single booster immunization. Fully glycosylated HIV trimer protein is a complex antigen, posing considerable immunodominance challenges for B cells1,2. Memory B cells generated under these long priming conditions had higher levels of antibody somatic hypermutation, and both memory B cells and antibodies were more likely to recognize non-immunodominant epitopes. Numerous BGC cell lineage phylogenies spanning more than the 6-month germinal centre period were identified, demonstrating continuous germinal centre activity and selection for at least 191 days with no further antigen exposure. A long-prime, slow-delivery (12 days) immunization approach holds promise for difficult vaccine targets and suggests that patience can have great value for tuning of germinal centres to maximize antibody responses.


Subject(s)
Antibody Affinity , B-Lymphocytes , Cell Movement , Clone Cells , Germinal Center , HIV Antibodies , Immunization , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibody Affinity/genetics , Antibody Affinity/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Clone Cells/cytology , Clone Cells/immunology , Epitopes, B-Lymphocyte/immunology , Gene Expression Profiling , Germinal Center/cytology , Germinal Center/immunology , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Humans , Immunization, Secondary , Macaca mulatta/immunology , Macaca mulatta/virology , Memory B Cells/cytology , Memory B Cells/immunology , Single-Cell Analysis , Somatic Hypermutation, Immunoglobulin/genetics , Somatic Hypermutation, Immunoglobulin/immunology , Time Factors , env Gene Products, Human Immunodeficiency Virus/administration & dosage , env Gene Products, Human Immunodeficiency Virus/immunology
4.
Sci Adv ; 8(3): eabk2039, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35044813

ABSTRACT

One of the rate-limiting steps in analyzing immune responses to vaccines or infections is the isolation and characterization of monoclonal antibodies. Here, we present a hybrid structural and bioinformatic approach to directly assign the heavy and light chains, identify complementarity-determining regions, and discover sequences from cryoEM density maps of serum-derived polyclonal antibodies bound to an antigen. When combined with next-generation sequencing of immune repertoires, we were able to specifically identify clonal family members, synthesize the monoclonal antibodies, and confirm that they interact with the antigen in a manner equivalent to the corresponding polyclonal antibodies. This structure-based approach for identification of monoclonal antibodies from polyclonal sera opens new avenues for analysis of immune responses and iterative vaccine design.

5.
Sci Immunol ; 6(66): eabf1152, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34860581

ABSTRACT

Saponins are potent and safe vaccine adjuvants, but their mechanisms of action remain incompletely understood. Here, we explored the properties of several saponin formulations, including immune-stimulatory complexes (ISCOMs) formed by the self-assembly of saponin and phospholipids in the absence or presence of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). We found that MPLA self-assembles with saponins to form particles physically resembling ISCOMs, which we termed saponin/MPLA nanoparticles (SMNP). Saponin-containing adjuvants exhibited distinctive mechanisms of action, altering lymph flow in a mast cell­dependent manner and promoting antigen entry into draining lymph nodes. SMNP was particularly effective, exhibiting even greater potency than the compositionally related adjuvant AS01B in mice, and primed robust germinal center B cell, TFH, and HIV tier 2 neutralizing antibodies in nonhuman primates. Together, these findings shed new light on mechanisms by which saponin adjuvants act to promote the immune response and suggest that SMNP may be a promising adjuvant in the setting of HIV, SARS-CoV-2, and other pathogens.


Subject(s)
Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Lymph/drug effects , Saponins/pharmacology , Toll-Like Receptors/agonists , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Lymph/physiology , Macaca mulatta , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles , Rats , Rats, Wistar
6.
NPJ Vaccines ; 5(1): 72, 2020.
Article in English | MEDLINE | ID: mdl-32802411

ABSTRACT

Following immunization, high-affinity antibody responses develop within germinal centers (GCs), specialized sites within follicles of the lymph node (LN) where B cells proliferate and undergo somatic hypermutation. Antigen availability within GCs is important, as B cells must acquire and present antigen to follicular helper T cells to drive this process. However, recombinant protein immunogens such as soluble human immunodeficiency virus (HIV) envelope (Env) trimers do not efficiently accumulate in follicles following traditional immunization. Here, we demonstrate two strategies to concentrate HIV Env immunogens in follicles, via the formation of immune complexes (ICs) or by employing self-assembling protein nanoparticles for multivalent display of Env antigens. Using rhesus macaques, we show that within a few days following immunization, free trimers were present in a diffuse pattern in draining LNs, while trimer ICs and Env nanoparticles accumulated in B cell follicles. Whole LN imaging strikingly revealed that ICs and trimer nanoparticles concentrated in as many as 500 follicles in a single LN within two days after immunization. Imaging of LNs collected seven days postimmunization showed that Env nanoparticles persisted on follicular dendritic cells in the light zone of nascent GCs. These findings suggest that the form of antigen administered in vaccination can dramatically impact localization in lymphoid tissues and provides a new rationale for the enhanced immune responses observed following immunization with ICs or nanoparticles.

8.
Cell ; 177(5): 1153-1171.e28, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31080066

ABSTRACT

Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , HIV Antibodies/immunology , HIV-1/immunology , Immunization, Passive , T-Lymphocytes, Helper-Inducer/immunology , Animals , B-Lymphocytes/pathology , Female , Germinal Center/pathology , Germinal Center/virology , Macaca mulatta , Male , T-Lymphocytes, Helper-Inducer/pathology , env Gene Products, Human Immunodeficiency Virus/immunology
9.
mBio ; 10(1)2019 01 08.
Article in English | MEDLINE | ID: mdl-30622189

ABSTRACT

Upon invasion of Lewis rat macrophages, Toxoplasma rapidly induces programmed cell death (pyroptosis), which prevents Toxoplasma replication, possibly explaining the resistance of the Lewis rat to Toxoplasma Using a chemical mutagenesis screen, we identified Toxoplasma mutants that no longer induced pyroptosis. Whole-genome sequencing led to the identification of three Toxoplasma parasitophorous vacuole-localized dense granule proteins, GRA35, GRA42, and GRA43, that are individually required for induction of Lewis rat macrophage pyroptosis. Macrophage infection with Δgra35, Δgra42, and Δgra43 parasites led to greatly reduced cell death rates and enhanced parasite replication. Lewis rat macrophages infected with parasites containing a single, double, or triple deletion of these GRAs showed similar levels of cell viability, suggesting that the three GRAs function in the same pathway. Deletion of GRA42 or GRA43 resulted in GRA35 (and other GRAs) being retained inside the parasitophorous vacuole instead of being localized to the parasitophorous vacuole membrane. Despite having greatly enhanced replication in Lewis rat macrophages in vitro, Δgra35, Δgra42, and Δgra43 parasites did not establish a chronic infection in Lewis rats. Toxoplasma did not induce F344 rat macrophage pyroptosis, but F344 rats infected with Δgra35, Δgra42, and Δgra43 parasites had reduced cyst numbers. Thus, these GRAs determined parasite in vivo fitness in F344 rats. Overall, our data suggest that these three Toxoplasma dense granule proteins play a critical role in establishing a chronic infection in vivo, independently of their role in mediating macrophage pyroptosis, likely due to their importance in regulating protein localization to the parasitophorous vacuole membrane.IMPORTANCE Inflammasomes are major components of the innate immune system and are responsible for detecting various microbial and environmental danger signals. Upon invasion of Lewis rat macrophages, the parasite rapidly activates the NLRP1 inflammasome, resulting in pyroptosis and elimination of the parasite's replication niche. The work reported here revealed that Toxoplasma GRA35, GRA42, and GRA43 are required for induction of Lewis rat macrophage pyroptosis. GRA42 and GRA43 mediate the correct localization of other GRAs, including GRA35, to the parasitophorous vacuole membrane. These three GRAs were also found to be important for parasite in vivo fitness in a Toxoplasma-susceptible rat strain, independently of their role in NLRP1 inflammasome activation, suggesting that they perform other important functions. Thus, this study identified three GRAs that mediate the induction of Lewis rat macrophage pyroptosis and are required for pathogenesis of the parasite.


Subject(s)
Host-Pathogen Interactions , Macrophages/immunology , Macrophages/parasitology , Protozoan Proteins/metabolism , Pyroptosis , Toxoplasma/immunology , Animals , Cell Survival , Cells, Cultured , DNA Mutational Analysis , Gene Deletion , Mutagenesis , Protozoan Proteins/genetics , Rats, Inbred F344 , Rats, Inbred Lew , Toxoplasma/genetics , Whole Genome Sequencing
10.
PLoS One ; 12(10): e0186998, 2017.
Article in English | MEDLINE | ID: mdl-29065175

ABSTRACT

The identification and study of antigen-specific CD4 T cells, both in peripheral blood and in tissues, is key for a broad range of immunological research, including vaccine responses and infectious diseases. Detection of these cells is hampered by both their rarity and their heterogeneity, in particular with regards to cytokine secretion profiles. These factors prevent the identification of the total pool of antigen-specific CD4 T cells by classical methods. We have developed assays for the highly sensitive detection of such cells by measuring the upregulation of surface activation induced markers (AIM). Here, we compare two such assays based on concurrent expression of CD69 plus CD40L (CD154) or expression of OX40 plus CD25, and we develop additional AIM assays based on OX40 plus PD-L1 or 4-1BB. We compare the relative sensitivity of these assays for detection of vaccine and natural infection-induced CD4 T cell responses and show that these assays identify distinct, but overlapping populations of antigen-specific CD4 T cells, a subpopulation of which can also be detected on the basis of cytokine synthesis. Bystander activation had minimal effect on AIM markers. However, some T regulatory cells upregulate CD25 upon antigen stimulation. We therefore validated AIM assays designed to exclude most T regulatory cells, for both human and non-human primate (NHP, Macaca mulatta) studies. Overall, through head-to-head comparisons and methodological improvements, we show that AIM assays represent a sensitive and valuable method for the detection of antigen-specific CD4 T cells.


Subject(s)
Antigens/immunology , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Animals , Antigens, CD/immunology , Bystander Effect , Cohort Studies , Humans , Macaca mulatta
11.
Curr Opin Immunol ; 47: 64-69, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28738289

ABSTRACT

Vaccine elicitation of protective antibody responses has proved difficult for a number of important human pathogens, including HIV-1. The amount of somatic hypermutation associated with the development of broadly neutralizing antibodies against HIV has not been achieved using conventional immunization strategies. An underexplored aspect of vaccine design is modulation of antigen kinetics. Immunization strategies with extended antigen availability have recently been shown to enhance humoral responses. In this review, we explore the mechanisms through which sustained antigen availability can enhance germinal center responses and the potency of antibody responses. These potential mechanisms include shifting B cell recognition away from non-neutralizing immunodominant epitopes, altered kinetics of immune complex deposition, improved T follicular helper (Tfh) cell responses, enhanced affinity maturation, and enhanced development of B cell memory. Finally, we discuss immunization strategies that result in extended antigen availability.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , Epitopes, B-Lymphocyte/metabolism , Germinal Center/immunology , HIV Antigens/metabolism , HIV Infections/immunology , HIV-1/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antibodies, Neutralizing/metabolism , Antibody Affinity , Antigen-Antibody Complex/metabolism , Epitopes, B-Lymphocyte/immunology , HIV Antibodies/metabolism , HIV Antigens/immunology , Humans , Immunity, Humoral , Immunologic Memory , Somatic Hypermutation, Immunoglobulin , Vaccination
12.
Immunity ; 46(6): 1073-1088.e6, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28636956

ABSTRACT

The development of stabilized recombinant HIV envelope trimers that mimic the virion surface molecule has increased enthusiasm for a neutralizing antibody (nAb)-based HIV vaccine. However, there is limited experience with recombinant trimers as immunogens in nonhuman primates, which are typically used as a model for humans. Here, we tested multiple immunogens and immunization strategies head-to-head to determine their impact on the quantity, quality, and kinetics of autologous tier 2 nAb development. A bilateral, adjuvanted, subcutaneous immunization protocol induced reproducible tier 2 nAb responses after only two immunizations 8 weeks apart, and these were further enhanced by a third immunization with BG505 SOSIP trimer. We identified immunogens that minimized non-neutralizing V3 responses and demonstrated that continuous immunogen delivery could enhance nAb responses. nAb responses were strongly associated with germinal center reactions, as assessed by lymph node fine needle aspiration. This study provides a framework for preclinical and clinical vaccine studies targeting nAb elicitation.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/therapeutic use , Germinal Center/immunology , HIV Antibodies/therapeutic use , HIV Infections/therapy , HIV-1/immunology , Animals , Cells, Cultured , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Germinal Center/virology , HIV Infections/immunology , Humans , Immunization , Injections, Subcutaneous , Primates , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology
13.
Cell Host Microbe ; 17(5): 642-52, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25974303

ABSTRACT

Toxoplasma gondii is a protozoan pathogen in the phylum Apicomplexa that resides within an intracellular parasitophorous vacuole (PV) that is selectively permeable to small molecules through unidentified mechanisms. We have identified GRA17 as a Toxoplasma-secreted protein that localizes to the parasitophorous vacuole membrane (PVM) and mediates passive transport of small molecules across the PVM. GRA17 is related to the putative Plasmodium translocon protein EXP2 and conserved across PV-residing Apicomplexa. The PVs of GRA17-deficient parasites have aberrant morphology, reduced permeability to small molecules, and structural instability. GRA17-deficient parasites proliferate slowly and are avirulent in mice. These GRA17-deficient phenotypes are rescued by complementation with Plasmodium EXP2. GRA17 functions synergistically with a related protein, GRA23. Exogenous expression of GRA17 or GRA23 alters the membrane conductance properties of Xenopus oocytes in a manner consistent with a large non-selective pore. Thus, GRA17 and GRA23 provide a molecular basis for PVM permeability and nutrient access.


Subject(s)
Antigens, Protozoan/metabolism , Membrane Transport Proteins/metabolism , Toxoplasma/physiology , Vacuoles/parasitology , Virulence Factors/metabolism , Animals , Antigens, Protozoan/genetics , Biological Transport , Gene Deletion , Genetic Complementation Test , Membrane Transport Proteins/genetics , Mice , Toxoplasma/growth & development , Toxoplasma/metabolism , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Animal/pathology , Virulence , Virulence Factors/genetics , Xenopus
14.
PLoS Pathog ; 10(3): e1003927, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24626226

ABSTRACT

Toxoplasma gondii is an intracellular parasite that infects a wide range of warm-blooded species. Rats vary in their susceptibility to this parasite. The Toxo1 locus conferring Toxoplasma resistance in rats was previously mapped to a region of chromosome 10 containing Nlrp1. This gene encodes an inflammasome sensor controlling macrophage sensitivity to anthrax lethal toxin (LT) induced rapid cell death (pyroptosis). We show here that rat strain differences in Toxoplasma infected macrophage sensitivity to pyroptosis, IL-1ß/IL-18 processing, and inhibition of parasite proliferation are perfectly correlated with NLRP1 sequence, while inversely correlated with sensitivity to anthrax LT-induced cell death. Using recombinant inbred rats, SNP analyses and whole transcriptome gene expression studies, we narrowed the candidate genes for control of Toxoplasma-mediated rat macrophage pyroptosis to four genes, one of which was Nlrp1. Knockdown of Nlrp1 in pyroptosis-sensitive macrophages resulted in higher parasite replication and protection from cell death. Reciprocally, overexpression of the NLRP1 variant from Toxoplasma-sensitive macrophages in pyroptosis-resistant cells led to sensitization of these resistant macrophages. Our findings reveal Toxoplasma as a novel activator of the NLRP1 inflammasome in rat macrophages.


Subject(s)
Inflammasomes/immunology , Macrophages/parasitology , Nerve Tissue Proteins/immunology , Toxoplasmosis/immunology , Animals , Blotting, Western , Disease Models, Animal , Gene Knockdown Techniques , Genetic Predisposition to Disease/genetics , Inflammasomes/genetics , Macrophages/immunology , Nerve Tissue Proteins/genetics , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Rats , Rats, Inbred Strains , Toxoplasmosis/genetics , Transcriptome
15.
Science ; 344(6179): 55-8, 2014 04 04.
Article in English | MEDLINE | ID: mdl-24674868

ABSTRACT

Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871-base pair designer eukaryotic chromosome, synIII, which is based on the 316,617-base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MATα allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.


Subject(s)
Chromosomes, Fungal , Saccharomyces cerevisiae/genetics , Synthetic Biology/methods , Base Sequence , Chromosomes, Fungal/genetics , Chromosomes, Fungal/metabolism , DNA, Fungal/genetics , Genes, Fungal , Genetic Fitness , Genome, Fungal , Genomic Instability , Introns , Molecular Sequence Data , Mutation , Polymerase Chain Reaction , RNA, Fungal/genetics , RNA, Transfer/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Sequence Analysis, DNA , Sequence Deletion , Transformation, Genetic
16.
mBio ; 5(1)2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24549849

ABSTRACT

UNLABELLED: Induction of immunity that limits Toxoplasma gondii infection in mice is critically dependent on the activation of the innate immune response. In this study, we investigated the role of cytoplasmic nucleotide-binding domain and leucine-rich repeat containing a pyrin domain (NLRP) inflammasome sensors during acute toxoplasmosis in mice. We show that in vitro Toxoplasma infection of murine bone marrow-derived macrophages activates the NLRP3 inflammasome, resulting in the rapid production and cleavage of interleukin-1ß (IL-1ß), with no measurable cleavage of IL-18 and no pyroptosis. Paradoxically, Toxoplasma-infected mice produced large quantities of IL-18 but had no measurable IL-1ß in their serum. Infection of mice deficient in NLRP3, caspase-1/11, IL-1R, or the inflammasome adaptor protein ASC led to decreased levels of circulating IL-18, increased parasite replication, and death. Interestingly, mice deficient in NLRP1 also displayed increased parasite loads and acute mortality. Using mice deficient in IL-18 and IL-18R, we show that this cytokine plays an important role in limiting parasite replication to promote murine survival. Our findings reveal T. gondii as a novel activator of the NLRP1 and NLRP3 inflammasomes in vivo and establish a role for these sensors in host resistance to toxoplasmosis. IMPORTANCE: Inflammasomes are multiprotein complexes that are a major component of the innate immune system. They contain "sensor" proteins that are responsible for detecting various microbial and environmental danger signals and function by activating caspase-1, an enzyme that mediates cleavage and release of the proinflammatory cytokines interleukin-1ß (IL-1ß) and IL-18. Toxoplasma gondii is a highly successful protozoan parasite capable of infecting a wide range of host species that have variable levels of resistance. We report here that T. gondii is a novel activator of the NLRP1 and NLRP3 inflammasomes in vivo and establish a role for these sensors in host resistance to toxoplasmosis. Using mice deficient in IL-18 and IL-18R, we show that the IL-18 cytokine plays a pivotal role by limiting parasite replication to promote murine survival.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Apoptosis Regulatory Proteins/immunology , Carrier Proteins/immunology , Disease Resistance , Inflammasomes/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Adaptor Proteins, Signal Transducing/deficiency , Animals , Apoptosis Regulatory Proteins/deficiency , Carrier Proteins/genetics , Female , Macrophages/immunology , Macrophages/parasitology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Parasite Load , Survival Analysis
17.
J Hum Virol Retrovirol ; 1(1): 7-14, 2014.
Article in English | MEDLINE | ID: mdl-31773048

ABSTRACT

Osteopontin (OPN) is a proinflammatory cytokine produced by T-cells, macrophages, osteoclasts, and several other cell types, which confers immunity to many intracellular pathogens. OPN was first identified as an early marker of cellular activation of T-lymphocytes and subsequently was shown to play a role in cancer through its ability to promote cell survival and inflammation. OPN levels are elevated in the plasma and cerebrospinal fluid of HIV-infected individuals and even more so in those suffering from HIV-related neurocognitive impairment. The infiltration of monocytes and macrophages both infected and uninfected into the brain is the first step in HIV pathogenesis of the central nervous system. Inhibition of OPN in macrophages significantly impairs HIV replication. In an effort to identify and understand the role of OPN in the neuropathogenesis of HIV infection, we are using a combination of in vitro, ex vivo and in vivo approaches. In this study we have used a molecular approach and a surrogate cell culture model to identify the domains of OPN that are required to enhance HIV replication. We found that N- and C-terminal fragments, encoding multiple motifs including sequences involved in binding integrins and CD44, a domain know to promote adhesion contribute to OPN's ability to increase HIV replication. Use of inhibitors against c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI-3K) impaired the ability of OPN to increase the integrin subunit 1 or CD29 on the surface of HIV-infected and bystander cells. These results suggest that multiple OPN-regulated cellular pathways are commandeered by HIV to promote productive replication and cell-to-cell spread.

SELECTION OF CITATIONS
SEARCH DETAIL
...