Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pediatr ; 24(1): 370, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811864

ABSTRACT

OBJECTIVE: The search for other indicators to assess the weight and nutritional status of individuals is important as it may provide more accurate information and assist in personalized medicine. This work is aimed to develop a machine learning predictions of weigh status derived from bioimpedance measurements and other physical parameters of healthy younger volunteers from Southern Cuba Region. METHODS: A pilot random study at the Pediatrics Hospital was conducted. The volunteers were selected between 2002 and 2008, ranging in age between 2 and 18 years old. In total, 776 female and male volunteers are studied. Along the age and sex in the cohort, volunteers with class I obesity, overweight, underweight and with normal weight are considered. The bioimpedance parameters are obtained by measuring standard tetrapolar whole-body configuration. The bioimpedance analyser is used, collecting fundamental bioelectrical and other parameters of interest. A classification model are performed, followed by a prediction of the body mass index. RESULTS: The results derived from the classification leaner reveal that the size, body density, phase angle, body mass index, fat-free mass, total body water volume according to Kotler, body surface area, extracellular water according to Kotler and sex largely govern the weight status of this population. In particular, the regression model shows that other bioparameters derived from impedance measurements can be associated with weight status estimation with high accuracy. CONCLUSION: The classification and regression predictive models developed in this work are of the great importance to assist the diagnosis of weigh status with high accuracy. These models can be used for prompt weight status evaluation of younger individuals at the Pediatrics Hospital in Santiago de Cuba, Cuba.


Subject(s)
Body Mass Index , Body Weight , Electric Impedance , Humans , Male , Cuba , Female , Child , Adolescent , Child, Preschool , Pilot Projects , Machine Learning , Body Composition , Nutritional Status , Thinness/diagnosis , Regression Analysis
2.
BMC Pediatr ; 24(1): 313, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711132

ABSTRACT

OBJECTIVE: The search for other indicators to assess the weight status of individuals is important as it may provide more accurate information and assist in personalized medicine.This work is aimed to develop a machine learning predictions of weigh status derived from bioimpedance measurements and other physical parameters of healthy infant juvenile cohort from the Southern Cuba Region, Santiago de Cuba. METHODS: The volunteers were selected between 2002 and 2008, ranging in age between 2 and 18 years old. In total, 393 female and male infant and juvenile individuals are studied. The bioimpedance parameters are obtained by measuring standard tetrapolar whole-body configuration. A classification model are performed, followed by a prediction of other bioparameters influencing the weight status. RESULTS: The results obtained from the classification model indicate that fat-free mass, reactance, and corrected resistance primarily influence the weight status of the studied population. Specifically, the regression model demonstrates that other bioparameters derived from impedance measurements can be highly accurate in estimating weight status. CONCLUSION: The classification and regression predictive models developed in this work are of the great importance for accessing to the weigh status with high accuracy of younger individuals at the Oncological Hospital in Santiago de Cuba, Cuba.


Subject(s)
Body Weight , Electric Impedance , Machine Learning , Humans , Cuba , Male , Female , Adolescent , Child, Preschool , Child , Body Composition , Infant , Cohort Studies
3.
J Transl Med ; 18(1): 190, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32381006

ABSTRACT

BACKGROUND: The modified Gompertz equation has been proposed to fit experimental data for direct current treated tumors when multiple-straight needle electrodes are individually inserted into the base perpendicular to the tumor long axis. The aim of this work is to evaluate the efficacy of direct current generated by multiple-electrode arrays on F3II mammary carcinoma that grow in the male and female BALB/c/Cenp mice, when multiple-straight needle electrodes and multiple-pairs of electrodes are inserted in the tumor. METHODS: A longitudinal and retrospective preclinical study was carried out. Male and female BALB/c/Cenp mice, the modified Gompertz equation, intensities (2, 6 and 10 mA) and exposure times (10 and 20 min) of direct current, and three geometries of multiple-electrodes (one formed by collinear electrodes and two by pair-electrodes) were used. Tumor volume and mice weight were measured. In addition, the mean tumor doubling time, tumor regression percentage, tumor growth delay, direct current overall effectiveness and mice survival were calculated. RESULTS: The greatest growth retardation, mean doubling time, regression percentage and growth delay of the primary F3II mammary carcinoma in male and female mice were observed when the geometry of multiple-pairs of electrodes was arranged in the tumor at 45, 135, 225 and 325o and the longest exposure time. In addition, highest direct current overall effectiveness (above 66%) was observed for this EChT scheme. CONCLUSIONS: It is concluded that electrochemical therapy may be potentially addressed to highly aggressive and metastic primary F3II murine mammary carcinoma and the modified Gompertz equation may be used to fit data of this direct current treated carcinoma. Additionally, electrochemical therapy effectiveness depends on the exposure time, geometry of multiple-electrodes and ratio between the direct current intensity applied and the polarization current induced in the tumor.


Subject(s)
Carcinoma , Mammary Neoplasms, Experimental , Animals , Electrodes , Female , Male , Mice , Mice, Inbred BALB C , Models, Theoretical , Retrospective Studies
4.
Front Oncol ; 8: 101, 2018.
Article in English | MEDLINE | ID: mdl-29725584

ABSTRACT

One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato (Solanum tuberosum L., var. Mondial) depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor.

5.
BMC Cancer ; 17(1): 174, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28270135

ABSTRACT

BACKGROUND: Unperturbed tumor growth kinetics is one of the more studied cancer topics; however, it is poorly understood. Mathematical modeling is a useful tool to elucidate new mechanisms involved in tumor growth kinetics, which can be relevant to understand cancer genesis and select the most suitable treatment. METHODS: The classical Kolmogorov-Johnson-Mehl-Avrami as well as the modified Kolmogorov-Johnson-Mehl-Avrami models to describe unperturbed fibrosarcoma Sa-37 tumor growth are used and compared with the Gompertz modified and Logistic models. Viable tumor cells (1×105) are inoculated to 28 BALB/c male mice. RESULTS: Modified Gompertz, Logistic, Kolmogorov-Johnson-Mehl-Avrami classical and modified Kolmogorov-Johnson-Mehl-Avrami models fit well to the experimental data and agree with one another. A jump in the time behaviors of the instantaneous slopes of classical and modified Kolmogorov-Johnson-Mehl-Avrami models and high values of these instantaneous slopes at very early stages of tumor growth kinetics are observed. CONCLUSIONS: The modified Kolmogorov-Johnson-Mehl-Avrami equation can be used to describe unperturbed fibrosarcoma Sa-37 tumor growth. It reveals that diffusion-controlled nucleation/growth and impingement mechanisms are involved in tumor growth kinetics. On the other hand, tumor development kinetics reveals dynamical structural transformations rather than a pure growth curve. Tumor fractal property prevails during entire TGK.


Subject(s)
Cell Proliferation , Fibrosarcoma/pathology , Models, Theoretical , Animals , Cell Line, Tumor , Humans , Kinetics , Mice , Xenograft Model Antitumor Assays
6.
Chin J Cancer Res ; 25(2): 223-34, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23592904

ABSTRACT

Electrochemical treatment is an alternative modality for tumor treatment based on the application of a low intensity direct electric current to the tumor tissue through two or more platinum electrodes placed within the tumor zone or in the surrounding areas. This treatment is noted for its great effectiveness, minimal invasiveness and local effect. Several studies have been conducted worldwide to evaluate the antitumoral effect of this therapy. In all these studies a variety of biochemical and physiological responses of tumors to the applied treatment have been obtained. By this reason, researchers have suggested various mechanisms to explain how direct electric current destroys tumor cells. Although, it is generally accepted this treatment induces electrolysis, electroosmosis and electroporation in tumoral tissues. However, action mechanism of this alternative modality on the tumor tissue is not well understood. Although the principle of Electrochemical treatment is simple, a standardized method is not yet available. The mechanism by which Electrochemical treatment affects tumor growth and survival may represent more complex process. The present work analyzes the latest and most important research done on the electrochemical treatment of tumors. We conclude with our point of view about the destruction mechanism features of this alternative therapy. Also, we suggest some mechanisms and strategies from the thermodynamic point of view for this therapy. In the area of Electrochemical treatment of cancer this tool has been exploited very little and much work remains to be done. Electrochemical treatment constitutes a good therapeutic option for patients that have failed the conventional oncology methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...