Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 77(11): 1228-1239, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37753550

ABSTRACT

In this research, an attempt was made to classify soil samples according to the different fractions of soil organic matter (SOM) using model systems in which the ratio of the fractions of SOM is chemically mimicked. A mixture of starch and nicotinamide was used for the labile organic matter model, while a standard of humic acid was used for the stabile organic matter. Changing the threshold value in the selected ranges after a permutation importance algorithm is conducted using train models and test data set, a list of selected important wavelengths and their importance scores were obtained. Three regions for the classification of soil fractions within the estimated probability density function are most prominent: 800-1200 cm-1, 0.48-0.55; 1800-2000 cm-1, 0.52-0.62; and 2500-3200 cm-1, 0.48-0.62, where the first component represents the spectral range while the second component covers the range of the importance score. Obtained wavelength ranges indicate the importance of the aliphatic stretching and bending vibration region, as well as the total soil reflectance (mineral content) for the characterization of organic matter fractions. A comparative evaluation with literature data found that the obtained wavelengths have a potential for application in methods of proximal and remote detection/calibration of existing and development of new sensors for Advanced Spaceborne Thermal Emission and Reflection Radiometer satellites, specifically in the shortwave infrared and thermal infrared ranges.

2.
Plants (Basel) ; 10(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806870

ABSTRACT

The less productive soils present one of the major problems in wheat production. Because of unfavorable conditions, halomorphic soils could be intensively utilized using ameliorative measures and by selecting suitable stress tolerant wheat genotypes. This study examined the responses of ten winter wheat cultivars on stressful conditions of halomorphic soil, solonetz type in Banat, Serbia. The wheat genotypes were grown in field trails of control and treatments with two soil amelioration levels using phosphor gypsum, in amounts of 25 and 50 tha-1. Across two vegetation seasons, phenotypic variability and genotype by environment interaction (GEI) for yield traits of wheat were studied. The additive main effects and multiplicative interaction (AMMI) models were used to study the GEI. AMMI analyses revealed significant genotype and environmental effects, as well as GEI effect. Analysis of GEI using the IPCA (Interaction Principal Components) analysis showed a statistical significance of the first two main components, IPCA1 and IPCA2 for yield, which jointly explained 70% of GEI variation. First source of variation IPCA1 explained 41.15% of the GEI for the grain weight per plant and 78.54% for the harvest index. The results revealed that wheat genotypes responded differently to stressful conditions and ameliorative measures.

SELECTION OF CITATIONS
SEARCH DETAIL
...