Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Viruses ; 14(10)2022 10 18.
Article in English | MEDLINE | ID: mdl-36298846

ABSTRACT

The Biomedical Advanced Research and Development Authority, part of the Administration for Strategic Preparedness and Response within the U.S. Department of Health and Human Services, recognizes that the evaluation of medical countermeasures under the Animal Rule requires well-characterized and reproducible animal models that are likely to be predictive of clinical benefit. Marburg virus (MARV), one of two members of the genus Marburgvirus, is characterized by a hemorrhagic fever and a high case fatality rate for which there are no licensed vaccines or therapeutics available. This natural history study consisted of twelve cynomolgus macaques challenged with 1000 PFU of MARV Angola and observed for body weight, temperature, viremia, hematology, clinical chemistry, and coagulation at multiple time points. All animals succumbed to disease within 8 days and exhibited signs consistent with those observed in human cases, including viremia, fever, systemic inflammation, coagulopathy, and lymphocytolysis, among others. Additionally, this study determined the time from exposure to onset of disease manifestations and the time course, frequency, and magnitude of the manifestations. This study will be instrumental in the design and development of medical countermeasures to Marburg virus disease.


Subject(s)
Marburg Virus Disease , Marburgvirus , Medical Countermeasures , Humans , Animals , Marburgvirus/physiology , Viremia , Macaca fascicularis
2.
Vaccines (Basel) ; 10(10)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36298588

ABSTRACT

The primary objective of this study was to characterize the disease course in cynomolgus macaques exposed to Sudan virus (SUDV), to determine if infection in this species is an appropriate model for the evaluation of filovirus countermeasures under the FDA Animal Rule. Sudan virus causes Sudan virus disease (SVD), with an average case fatality rate of approximately 50%, and while research is ongoing, presently there are no approved SUDV vaccines or therapies. Well characterized animal models are crucial for further developing and evaluating countermeasures for SUDV. Twenty (20) cynomolgus macaques were exposed intramuscularly to either SUDV or sterile phosphate-buffered saline; 10 SUDV-exposed animals were euthanized on schedule to characterize pathology at defined durations post-exposure and 8 SUDV-exposed animals were not part of the scheduled euthanasia cohort. Survival was assessed, along with clinical observations, body weights, body temperatures, hematology, clinical chemistry, coagulation, viral load (serum and tissues), macroscopic observations, and histopathology. There were statistically significant differences between SUDV-exposed animals and mock-exposed animals for 26 parameters, including telemetry body temperature, clinical chemistry parameters, hematology parameters, activated partial thromboplastin time, serum viremia, and biomarkers that characterize the disease course of SUDV in cynomolgus macaques.

3.
Vaccines (Basel) ; 10(8)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36016203

ABSTRACT

Marburg virus (MARV) is a filovirus that can infect humans and nonhuman primates (NHPs), causing severe disease and death. Of the filoviruses, Ebola virus (EBOV) has been the primary target for vaccine and therapeutic development. However, MARV has an average case fatality rate of approximately 50%, the infectious dose is low, and there are currently no approved vaccines or therapies targeted at infection with MARV. The purpose of this study was to characterize disease course in cynomolgus macaques intramuscularly exposed to MARV Angola variant. There were several biomarkers that reliably correlated with MARV-induced disease, including: viral load; elevated total clinical scores; temperature changes; elevated ALT, ALP, BA, TBIL, CRP and decreased ALB values; decreased lymphocytes and platelets; and prolonged PTT. A scheduled euthanasia component also provided the opportunity to study the earliest stages of the disease. This study provides evidence for the application of this model to evaluate potential vaccines and therapies against MARV and will be valuable in improving existing models.

4.
Microorganisms ; 9(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652589

ABSTRACT

Ebola virus (EBOV) is a negative-sense RNA virus that can infect humans and nonhuman primates with severe health consequences. Development of countermeasures requires a thorough understanding of the interaction between host and pathogen, and the course of disease. The goal of this study was to further characterize EBOV disease in a uniformly lethal rhesus macaque model, in order to support development of a well-characterized model following rigorous quality standards. Rhesus macaques were intramuscularly exposed to EBOV and one group was euthanized at predetermined time points to characterize progression of disease. A second group was not scheduled for euthanasia in order to analyze survival, changes in physiology, clinical pathology, terminal pathology, and telemetry kinetics. On day 3, sporadic viremia was observed and pathological evidence was noted in lymph nodes. By day 5, viremia was detected in all EBOV exposed animals and pathological evidence was noted in the liver, spleen, and gastrointestinal tissues. These data support the notion that EBOV infection in rhesus macaques is a rapid systemic disease similar to infection in humans, under a compressed time scale. Biomarkers that correlated with disease progression at the earliest stages of infection were observed thereby identifying potential "trigger-to-treat" for use in therapeutic studies.

5.
PLoS One ; 15(10): e0237520, 2020.
Article in English | MEDLINE | ID: mdl-33002030

ABSTRACT

OBJECTIVES: Gout is the most prevalent inflammatory arthritis. To study the effects of regular physical activity and exercise intensity on inflammation and clinical outcome, we examined inflammatory pathogenesis in an acute model of murine gout and analyzed human gout patient clinical data as a function of physical activity. METHODS: NF-κB-luciferase reporter mice were organized into four groups and exercised at 0 m/min (non-exercise), 8 m/min (low-intensity), 11 m/min (moderate-intensity), and 15 m/min (high-intensity) for two weeks. Mice subsequently received intra-articular monosodium urate (MSU) crystal injections (0.5mg) and the inflammatory response was analyzed 15 hours later. Ankle swelling, NF-κB activity, histopathology, and tissue infiltration by macrophages and neutrophils were measured. Toll-like receptor (TLR)2 was quantified on peripheral monocytes/neutrophils by flow cytometry and both cytokines and chemokines were measured in serum or synovial aspirates. Clinical data and questionnaires accessing overall physical activity levels were collected from gout patients. RESULTS: Injection of MSU crystals produced a robust inflammatory response with increased ankle swelling, NF-κB activity, and synovial infiltration by macrophages and neutrophils. These effects were partially mitigated by low and moderate-intensity exercise. Furthermore, IL-1ß was decreased at the site of MSU crystal injection, TLR2 expression on peripheral neutrophils was downregulated, and expression of CXCL1 in serum was suppressed with low and moderate-intensity exercise. Conversely, the high-intensity exercise group closely resembled the non-exercised control group by nearly all metrics of inflammation measured in this study. Physically active gout patients had significantly less flares/yr, decreased C-reactive protein (CRP) levels, and lower pain scores relative to physically inactive patients. CONCLUSIONS: Regular, moderate physical activity can produce a quantifiable anti-inflammatory effect capable of partially mitigating the pathologic response induced by intra-articular MSU crystals by downregulating TLR2 expression on circulating neutrophils and suppressing systemic CXCL1. Low and moderate-intensity exercise produces this anti-inflammatory effect to varying degrees, while high-intensity exercise provides no significant difference in inflammation compared to non-exercising controls. Consistent with the animal model, gout patients with higher levels of physical activity have more favorable prognostic data. Collectively, these data suggest the need for further research and may be the foundation to a future paradigm-shift in conventional exercise recommendations provided by Rheumatologists to gout patients.


Subject(s)
Chemokine CXCL1/blood , Gout/therapy , Inflammation/prevention & control , Physical Conditioning, Animal , Toll-Like Receptor 2/blood , Animals , Disease Models, Animal , Down-Regulation , Exercise/physiology , Female , Gout/blood , Gout/pathology , Humans , Inflammation/blood , Inflammation/pathology , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , Neutrophils/metabolism , Neutrophils/pathology , Pain/prevention & control , Prognosis , Synovial Membrane/metabolism , Synovial Membrane/pathology
6.
PLoS One ; 14(4): e0215457, 2019.
Article in English | MEDLINE | ID: mdl-30998735

ABSTRACT

The need for an efficacious vaccine against highly pathogenic filoviruses was reinforced by the recent and devastating 2014-2016 outbreak of Ebola virus (EBOV) disease in Guinea, Sierra Leone, and Liberia that resulted in more than 10,000 casualties. Such a vaccine would need to be vetted through a U.S. Food and Drug Administration (FDA) traditional, accelerated, or Animal Rule or similar European Medicines Agency (EMA) regulatory pathway. Under the FDA Animal Rule, vaccine-induced immune responses correlating with survival of non-human primates (NHPs), or another well-characterized animal model, following lethal EBOV challenge will need to be bridged to human immune response distributions in clinical trials. When possible, species-neutral methods are ideal for detection and bridging of these immune responses, such as methods to quantify anti-EBOV glycoprotein (GP) immunoglobulin G (IgG) antibodies. Further, any method that will be used to support advanced clinical and non-clinical trials will most likely require formal validation to assess suitability prior to use. Reported here is the development, qualification, and validation of a Filovirus Animal Nonclinical Group anti-EBOV GP IgG Enzyme-Linked Immunosorbent Assay (FANG anti-EBOV GP IgG ELISA) for testing human serum samples.


Subject(s)
Antibodies, Viral/blood , Ebolavirus , Hemorrhagic Fever, Ebola/blood , Immunoglobulin G/blood , Animals , Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Female , Glycoproteins/immunology , Haplorhini , Humans , Immunoglobulin G/immunology , Liberia , Male , Sierra Leone , Viral Proteins/immunology
7.
Virol J ; 14(1): 135, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28728590

ABSTRACT

BACKGROUND: Chikungunya virus (CHIKV) is transmitted via mosquito bite and potentially by aerosol, causing chikungunya fever and arthritic disease in humans. There are currently no licensed vaccines or antiviral therapeutics to protect against CHIKV infection in humans. Animal models recapitulating human disease, especially for transmission by aerosol, are needed for licensure of such medical countermeasures. METHODS: Cynomolgus macaques (CMs) were challenged by intradermal (ID) inoculation or exposure to an aerosol containing CHIKV Ross strain at different target infectious doses (103-107 plaque forming units (PFU)). The clinical and virologic courses of disease were monitored up to 14 days post-exposure. RESULTS: ID infection of CMs led to overt clinical disease, detectable viremia, and increased blood markers of liver damage. Animals challenged by aerosol exhibited viremia and increased liver damage biomarkers with minimal observed clinical disease. All animals survived CHIKV challenge. CONCLUSIONS: We have described CHIKV infection in CMs following ID inoculation and, for the first time, infection by aerosol. Based on limited reported cases in the published literature, the aerosol model recapitulates the virologic findings of human infection via this route. The results of this study provide additional evidence for the potential use of CMs as a model for evaluating medical countermeasures against CHIKV.


Subject(s)
Aerosols , Chikungunya Fever/pathology , Chikungunya Fever/virology , Disease Models, Animal , Animals , Female , Injections, Intradermal , Macaca fascicularis , Male
8.
Malar J ; 15(1): 425, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27549662

ABSTRACT

BACKGROUND: Malaria exerts a tremendous socioeconomic impact worldwide despite current control efforts, and novel disease transmission-blocking strategies are urgently needed. The Enterobacter bacterium Esp_Z, which is naturally harboured in the mosquito midgut, can inhibit the development of Plasmodium parasites prior to their invasion of the midgut epithelium through a mechanism that involves oxidative stress. Here, a multifaceted approach is used to study the tripartite interactions between the mosquito, Esp_Z and Plasmodium, towards addressing the feasibility of using sugar-baited exposure of mosquitoes to the Esp_Z bacterium for interruption of malaria transmission. METHODS: The ability of Esp_Z to colonize Anopheles gambiae midguts harbouring microbiota derived from wild mosquitoes was determined by qPCR. Upon introduction of Esp_Z via nectar feeding, the permissiveness of colonized mosquitoes to Plasmodium falciparum infection was determined, as well as the impact of Esp_Z on mosquito fitness parameters, such as longevity, number of eggs laid and number of larvae hatched. The genome of Esp_Z was sequenced, and transcriptome analyses were performed to identify bacterial genes that are important for colonization of the mosquito midgut, as well as for ROS-production. A gene expression analysis of members of the oxidative defence pathway of Plasmodium berghei was also conducted to assess the parasite's oxidative defence response to Esp_Z exposure. RESULTS: Esp_Z persisted for up to 4 days in the An. gambiae midgut after introduction via nectar feeding, and was able to significantly inhibit Plasmodium sporogonic development. Introduction of this bacterium did not adversely affect mosquito fitness. Candidate genes involved in the selection of a better fit Esp_Z to the mosquito midgut environment and in its ability to condition oxidative status of its surroundings were identified, and parasite expression data indicated that Esp_Z is able to induce a partial and temporary shutdown of the ookinetes antioxidant response. CONCLUSIONS: Esp_Z is capable of inhibiting sporogonic development of Plasmodium in the presence of the mosquito's native microbiota without affecting mosquito fitness. Several candidate bacterial genes are likely mediating midgut colonization and ROS production, and inhibition of Plasmodium development appears to involve a shutdown of the parasite's oxidative defence system. A better understanding of the complex reciprocal tripartite interactions can facilitate the development and optimization of an Esp_Z-based malaria control strategy.


Subject(s)
Anopheles/microbiology , Anopheles/parasitology , Enterobacter/growth & development , Microbial Interactions , Mosquito Vectors/microbiology , Mosquito Vectors/parasitology , Plasmodium/growth & development , Animals , Enterobacter/genetics , Female , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/parasitology , Longevity , Oviposition , Plasmodium/genetics , Real-Time Polymerase Chain Reaction , Survival Analysis
9.
Dev Comp Immunol ; 39(4): 323-32, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23178401

ABSTRACT

Malaria parasite transmission depends upon the successful development of Plasmodium in its Anopheles mosquito vector. The mosquito's innate immune system constitutes a major bottleneck for parasite population growth. We show here that in Anopheles gambiae, the midgut-specific transcription factor Caudal acts as a negative regulator in the Imd pathway-mediated immune response against the human malaria parasite Plasmodium falciparum. Caudal also modulates the mosquito midgut bacterial flora. RNAi-mediated silencing of Caudal enhanced the mosquito's resistance to bacterial infections and increased the transcriptional abundance of key immune effector genes. Interestingly, Caudal's silencing resulted in an increased lifespan of the mosquito, while it impaired reproductive fitness with respect to egg laying and hatching.


Subject(s)
Anopheles/immunology , Anopheles/parasitology , Homeodomain Proteins/physiology , Immunity, Innate , Insect Proteins/physiology , Insect Vectors/parasitology , Plasmodium falciparum/immunology , Transcription Factors/physiology , Animals , Anopheles/genetics , Anopheles/microbiology , Digestive System/microbiology , Genetic Fitness/genetics , Homeodomain Proteins/genetics , Host-Parasite Interactions/genetics , Insect Proteins/genetics , Insect Vectors/genetics , Insect Vectors/immunology , Insect Vectors/microbiology , Malaria, Falciparum/transmission , Plasmodium falciparum/pathogenicity , RNA Interference , Staphylococcus aureus/physiology , Transcription Factors/genetics
10.
Cell Host Microbe ; 12(4): 521-30, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-23084919

ABSTRACT

Insects rely on innate immune responses controlled by the immune deficiency (IMD), Toll, and other immune signaling pathways to combat infection by a broad spectrum of pathogens. These pathways signal to downstream NF-κB family transcription factors that control specific antipathogen action via direct transcriptional control of immune effectors, hematopoiesis, and melanization. Here we show that in the Anopheles malaria vector, IMD and Toll pathways mediate species-specific defenses against Plasmodium and bacteria through the transcriptional regulation of splicing factors Caper and IRSF1 that, in turn, determine the production of pathogen-specific splice variant repertoires of the hypervariable pattern recognition receptor AgDscam. This mechanism represents an additional level of immune response regulation that may provide a previously unrecognized level of plasticity to the insect immune pathway-regulated antipathogen defenses.


Subject(s)
Anopheles/parasitology , Bacteria/immunology , Cell Adhesion Molecules/metabolism , Host-Pathogen Interactions , Immunity, Innate , NF-kappa B/metabolism , Plasmodium/immunology , Animals , Anopheles/immunology , Insect Proteins/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction
11.
Cell Host Microbe ; 10(4): 307-10, 2011 Oct 20.
Article in English | MEDLINE | ID: mdl-22018231

ABSTRACT

The resident microbiota of insect vectors can impede transmission of human pathogens. Recent studies have highlighted the capacity of endogenous bacteria to decrease viral and parasitic infections in mosquito and tsetse fly vectors by activating their immune responses or directly inhibiting pathogen development. These microbes may prove effective agents for manipulating the vector competence of malaria and other important human pathogens.


Subject(s)
Communicable Diseases/transmission , Insect Vectors/microbiology , Metagenome , Animals , Culicidae/immunology , Culicidae/microbiology , Humans , Insect Vectors/immunology , Tsetse Flies/immunology , Tsetse Flies/microbiology
12.
J Trop Med ; 2011: 891342, 2011.
Article in English | MEDLINE | ID: mdl-21876705

ABSTRACT

Current efforts have proven inadequate to stop the transmission of Plasmodium parasites, and hence the spread of malaria, by Anopheles mosquitoes. Therefore, a novel arsenal of strategies for inhibiting Plasmodium infection of mosquitoes is urgently needed. In this paper, we summarize research on two approaches to malaria control, a low-tech strategy based on parasite inhibition by the mosquito's natural microflora, and a high-tech strategy using genetic modification of mosquitoes that renders them resistant to infection and discuss advantages and disadvantages for both approaches.

13.
Science ; 332(6031): 855-8, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21566196

ABSTRACT

Malaria parasite transmission depends on the successful transition of Plasmodium through discrete developmental stages in the lumen of the mosquito midgut. Like the human intestinal tract, the mosquito midgut contains a diverse microbial flora, which may compromise the ability of Plasmodium to establish infection. We have identified an Enterobacter bacterium isolated from wild mosquito populations in Zambia that renders the mosquito resistant to infection with the human malaria parasite Plasmodium falciparum by interfering with parasite development before invasion of the midgut epithelium. Phenotypic analyses showed that the anti-Plasmodium mechanism requires small populations of replicating bacteria and is mediated through a mosquito-independent interaction with the malaria parasite. We show that this anti-Plasmodium effect is largely caused by bacterial generation of reactive oxygen species.


Subject(s)
Anopheles/microbiology , Anopheles/parasitology , Enterobacter/physiology , Plasmodium falciparum/growth & development , Reactive Oxygen Species/metabolism , Animals , Anopheles/immunology , Digestive System/microbiology , Digestive System/parasitology , Enterobacter/growth & development , Enterobacter/isolation & purification , Host-Parasite Interactions , Immunity, Innate , Insect Vectors/immunology , Insect Vectors/microbiology , Insect Vectors/parasitology , Plasmodium berghei/growth & development , Plasmodium falciparum/pathogenicity , Zambia
14.
Dev Comp Immunol ; 34(4): 387-95, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20026176

ABSTRACT

The causative agent of malaria, Plasmodium, has to undergo complex developmental transitions and survive attacks from the mosquito's innate immune system to achieve transmission from one host to another through the vector. Here we discuss recent findings on the role of the mosquito's innate immune signaling pathways in preventing infection by the Plasmodium parasite, the identification and mechanistic description of novel anti-parasite molecules, the role that natural bacteria harbored in the mosquito midgut might play in this immune defense and the crucial parasite and vector molecules that mediate midgut infection.


Subject(s)
Culicidae/immunology , Insect Vectors/immunology , Malaria/immunology , Plasmodium berghei/immunology , Animals , Evolution, Molecular , Fibrinogen/immunology , Fibrinogen/metabolism , Gene Expression Regulation, Enzymologic/immunology , Humans , Immunity, Innate , Infection Control , Insect Proteins/immunology , Insect Vectors/growth & development , Insect Vectors/pathogenicity , Lectins, C-Type/immunology , Malaria/parasitology , Malaria/transmission , Oocysts/immunology , Oocysts/metabolism , Plasmodium berghei/growth & development , Plasmodium berghei/pathogenicity , Signal Transduction/immunology
15.
BMC Microbiol ; 9: 49, 2009 Mar 05.
Article in English | MEDLINE | ID: mdl-19265532

ABSTRACT

BACKGROUND: Arthropod-borne viruses (arboviruses) can persistently infect and cause limited damage to mosquito vectors. RNA interference (RNAi) is a mosquito antiviral response important in restricting RNA virus replication and has been shown to be active against some arboviruses. The goal of this study was to use a recombinant Sindbis virus (SINV; family Togaviridae; genus Alphavirus) that expresses B2 protein of Flock House virus (FHV; family Nodaviridae; genus Alphanodavirus), a protein that inhibits RNAi, to determine the effects of linking arbovirus infection with RNAi inhibition. RESULTS: B2 protein expression from SINV (TE/3'2J) inhibited the accumulation of non-specific small RNAs in Aedes aegypti mosquito cell culture and virus-specific small RNAs both in infected cell culture and Ae. aegypti mosquitoes. More viral genomic and subgenomic RNA accumulated in cells and mosquitoes infected with TE/3'2J virus expressing B2 (TE/3'2J/B2) compared to TE/3'2J and TE/3'2J virus expressing GFP. TE/3'2J/B2 exhibited increased infection rates, dissemination rates, and infectious virus titers in mosquitoes following oral bloodmeal. Following infectious oral bloodmeal, significantly more mosquitoes died when TE/3'2J/B2 was ingested. The virus was 100% lethal following intrathoracic inoculation of multiple mosquito species and lethality was dose-dependent in Ae. aegypti. CONCLUSION: We show that RNAi is active in Ae. aegypti cell culture and that B2 protein inhibits RNAi in mosquito cells when expressed by a recombinant SINV. Also, SINV more efficiently replicates in mosquito cells when RNAi is inhibited. Finally, TE/3'2J/B2 kills mosquitoes in a dose-dependent manner independent of infection route and mosquito species.


Subject(s)
Aedes/virology , Alphavirus Infections/virology , Alphavirus/pathogenicity , RNA Interference , Virus Replication/genetics , Alphavirus/physiology , Animals , Chlorocebus aethiops , Cricetinae , Gene Expression Regulation, Viral , RNA, Viral/metabolism , Reassortant Viruses/genetics , Reassortant Viruses/pathogenicity , Sindbis Virus/genetics , Sindbis Virus/pathogenicity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...