Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz Oral Res ; 36: e034, 2022.
Article in English | MEDLINE | ID: mdl-35293499

ABSTRACT

This study aimed to analyze oxidative stress and the activity of antioxidant enzymes in the salivary glands of streptozotocin (STZ)-induced diabetic rats with ad libitum consumption of chamomile tea in substitution of water for 21 days. Rats were divided in two control groups (untreated control and treated control) and two diabetic groups (untreated diabetic and treated diabetic). Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activities, total antioxidant status (TAS), and malondialdehyde (MDA) concentrations were determined. The chemical composition of the chamomile essential oil revealed 39 compounds, accounting for 93.5% of the total oils. The polyphenolic profile of the tea showed the presence of apigenin, luteolin, umbelliferone, and esculetin. SOD, GPx, CAT, and TAS levels were lower in the parotid (PA) diabetic glands, but treatment increased their concentration in both the submandibular (SM) and PA diabetic salivary glands. Increased MDA levels were observed in the PA diabetic glands, which were decreased by the consumption of chamomile tea with a reduction in hyperglycemia compared to that in untreated diabetic rats. However, the SM diabetic glands showed no difference in the MDA content. The consumption of chamomile tea prevented oxidative stress in the PA glands of diabetic rats, exhibiting hypoglycemic and antioxidant effects. Thus, chamomile tea could be a potential candidate for preventing oral complications in diabetes mellitus.


Subject(s)
Antioxidants , Diabetes Mellitus, Experimental , Animals , Antioxidants/pharmacology , Catalase , Chamomile , Diabetes Mellitus, Experimental/drug therapy , Rats , Salivary Glands , Streptozocin , Tea
2.
Braz. oral res. (Online) ; 36: e034, 2022. tab, graf
Article in English | LILACS-Express | LILACS, BBO - Dentistry | ID: biblio-1364593

ABSTRACT

Abstract: This study aimed to analyze oxidative stress and the activity of antioxidant enzymes in the salivary glands of streptozotocin (STZ)-induced diabetic rats with ad libitum consumption of chamomile tea in substitution of water for 21 days. Rats were divided in two control groups (untreated control and treated control) and two diabetic groups (untreated diabetic and treated diabetic). Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activities, total antioxidant status (TAS), and malondialdehyde (MDA) concentrations were determined. The chemical composition of the chamomile essential oil revealed 39 compounds, accounting for 93.5% of the total oils. The polyphenolic profile of the tea showed the presence of apigenin, luteolin, umbelliferone, and esculetin. SOD, GPx, CAT, and TAS levels were lower in the parotid (PA) diabetic glands, but treatment increased their concentration in both the submandibular (SM) and PA diabetic salivary glands. Increased MDA levels were observed in the PA diabetic glands, which were decreased by the consumption of chamomile tea with a reduction in hyperglycemia compared to that in untreated diabetic rats. However, the SM diabetic glands showed no difference in the MDA content. The consumption of chamomile tea prevented oxidative stress in the PA glands of diabetic rats, exhibiting hypoglycemic and antioxidant effects. Thus, chamomile tea could be a potential candidate for preventing oral complications in diabetes mellitus.

3.
Biomed Chromatogr ; 35(9): e5147, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33885176

ABSTRACT

Rivaroxaban is an anticoagulant (orally active direct Xa inhibitor) considered to reduce the risk of stroke and systemic embolism and treat deep vein thrombosis, pulmonary embolism, and other cardiovascular complications. Bioanalytical methods for rivaroxaban quantification in plasma are necessary for application in pharmacokinetic studies, as well as in drug therapeutic monitoring. In this work, we developed and validated a sensitive bioanalytical method using LC-MS/MS for rivaroxaban quantification in human plasma using an one-step liquid-liquid extraction. The linear concentration range was 1-600 ng/mL. The bioanalytical method was also applied to pharmacokinetic studies in healthy volunteers under fasting and fed conditions. The results demonstrated that the method is rapid, sensitive, and adequate for application in pharmacokinetic studies.


Subject(s)
Chromatography, Liquid/methods , Rivaroxaban/blood , Rivaroxaban/pharmacokinetics , Tandem Mass Spectrometry/methods , Adolescent , Adult , Humans , Limit of Detection , Linear Models , Liquid-Liquid Extraction , Middle Aged , Reproducibility of Results , Rivaroxaban/chemistry , Rivaroxaban/isolation & purification , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...