Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cryobiology ; 102: 56-67, 2021 10.
Article in English | MEDLINE | ID: mdl-34329639

ABSTRACT

Coral reefs are disappearing worldwide as a result of several harmful human activities. The establishment of cryobanks can secure a future for these ecosystems. To design effective cryopreservation protocols, basic proprieties such as chilling tolerance and lipid content must be assessed. In the present study, we investigated chilling sensitivity and the effect of chilling exposure on the lipid content and composition of larvae belonging to 2 common Indo-Pacific corals: Seriatopora caliendrum and Pocillopora verrucosa. The viability of coral larvae incubated with 0.5, 1, and 2 M ethylene glycol (EG), propylene glycol (PG), dimethyl sulfoxide (Me2SO), methanol, or glycerol and kept at 5 °C for different time periods was documented. In addition, we investigated the content of cholesterol, triacylglycerol (TAG), wax ester (WE), sterol ester (SE), lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamine, and several fatty acid (FA) classes in coral propagules incubated with 1 M PG or EG and kept at 5 °C for 6 h. Moreover, we examined seasonal changes in the aforementioned lipid classes in coral larvae. S. caliendrum incubated with 0.5 M PG or Me2SO and chilled for 2 h exhibited a viability rate of 11 ± 11%, whereas P. verrucosa exhibited a viability rate of 22 ± 14% after being chilled for 4 h. Furthermore, the results indicated that chilling exposure did not affect the content of any investigated lipid class in either species. The higher concentration of SE in P. verrucosa compared to S. caliendrum larvae may have contributed to the different cryotolerance displayed by the 2 larval species. A year-round lipid analysis of both coral larvae species revealed trends of homeoviscous adaptation and seasonal enhancement of lipid fluxes from symbionts to the host. During winter, the cholesterol/phospholipid ratio significantly increased, and P. verrucosa larvae exhibited an averagely decrease in FA chain lengths. During spring and summer, intracellular lipid content in the form of TAGs and WEs significantly increased in both species, and the average content of Symbiodiniaceae-derived FAs increased in P. verrucosa larvae. We concluded that the low cryotolerance displayed by S. caliendrum and P. verrucosa larvae is attributable to their chilling-sensitive membrane lipid profile and the high intracellular lipid content provided by their endosymbionts.


Subject(s)
Anthozoa , Animals , Coral Reefs , Cryopreservation/methods , Ecosystem , Humans , Larva , Lipids
2.
Cryobiology ; 98: 80-86, 2021 02.
Article in English | MEDLINE | ID: mdl-33386123

ABSTRACT

Coral reefs worldwide are receding because of detrimental human activities, and cryopreservation of coral larvae would ensure that their genetic biodiversity is not irremediably lost. In recent years, the vitrification and laser warming of coral propagules has demonstrated promising results. During cryopreservation, cellular membranes undergo substantial reconfigurations that may affect survival. Fat enrichment may alter the physical proprieties of cell membranes and improve resistance to low temperatures. Therefore, the aim of this study was to determine whether supplementation of exogenous lipids using liposomes would improve cryosurvival and further development of the vitrified and laser-warmed coral larvae of Seriatopora caliendrum and Pocillopora verrucosa. A vitrification solution (VS) composed of 2 M ethylene glycol (EG), 1 M propylene glycol (PG), 40% (w/v) Ficoll, and 10% gold nanoparticles (at a final concentration of 1.2 × 1018 particles/m3 and an optimised emission wavelength of 535 nm) was chosen. Coral larvae were subjected to vitrification with VS incorporating one of four lipid classes: phosphatidylcholine (PC), phosphatidylethanolamine (PE), erucic acid (EA), and linoleic acid (LA). Warming was achieved using a single laser pulse (300 V, 10 ms pulse width, 2 mm laser beam diameter). A significantly higher vitality rate was observed in S. caliendrum larvae subjected to vitrification and laser warming with EA-incorporated VS, and P. verrucosa larvae vitrified and laser warmed using PE-incorporated VS achieved a significantly higher settlement rate. Our study demonstrated that supplementation of exogenous lipids with liposomes enhances coral larvae cryotolerance and improves cryopreservation outcomes. Lipid enrichment may play a key role in cryobanking coral propagules, and in propagule development after thawing.


Subject(s)
Anthozoa , Metal Nanoparticles , Animals , Cryopreservation/methods , Dietary Supplements , Gold , Larva , Lasers , Lipids , Liposomes , Vitrification
3.
Sci Rep ; 9(1): 18851, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827193

ABSTRACT

Coral reefs are suffering on a global scale due to human impacts, thereby necessitating cryopreservation efforts. The objective of this study was to develop a suitable vitrification and laser warming protocol for larvae of the scleractinian coral Seriatopora caliendrum, which inherit their dinoflagellate algal symbionts vertically. Toxicity experiments were conducted with the cryoprotectants (CPAs) ethylene glycol (EG), propylene glycol (PG), dimethyl sulfoxide (DMSO), glycerol (GLY), and methanol (METH; listed in order from least to most toxic), and larvae were subjected to vitrification and laser warming using 2 M EG + 1 M PG and 2 M EG + 1 M DMSO. Vitrification and laser warming (300 V, 10 ms pulse width, 2 mm beam diameter) using a vitrification solution of 2 M EG + 1 M PG, 40% w/v Ficoll, and 10% v/v gold nanobars (GNB) at a final concentration of 1.2 × 1018 GNB/mL and a characteristic wavelength of 535 nm resulted in larvae with vitality and settlement percentages of 55 and 9%, respectively. This represents the first successful instance of cryopreservation of coral larvae that proceeded to settle upon warming, and suggests that the vitrification and ultra-fast laser warming approach may be applicable to other threatened marine species.


Subject(s)
Anthozoa , Cryopreservation/methods , Dinoflagellida , Larva , Vitrification , Animals , Cryoprotective Agents , Ethylene Glycol , Propylene Glycol , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...