Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Syst Biol ; 67(1): 49-60, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29253296

ABSTRACT

Scientists building the Tree of Life face an overwhelming challenge to categorize phenotypes (e.g., anatomy, physiology) from millions of living and fossil species. This biodiversity challenge far outstrips the capacities of trained scientific experts. Here we explore whether crowdsourcing can be used to collect matrix data on a large scale with the participation of nonexpert students, or "citizen scientists." Crowdsourcing, or data collection by nonexperts, frequently via the internet, has enabled scientists to tackle some large-scale data collection challenges too massive for individuals or scientific teams alone. The quality of work by nonexpert crowds is, however, often questioned and little data have been collected on how such crowds perform on complex tasks such as phylogenetic character coding. We studied a crowd of over 600 nonexperts and found that they could use images to identify anatomical similarity (hypotheses of homology) with an average accuracy of 82% compared with scores provided by experts in the field. This performance pattern held across the Tree of Life, from protists to vertebrates. We introduce a procedure that predicts the difficulty of each character and that can be used to assign harder characters to experts and easier characters to a nonexpert crowd for scoring. We test this procedure in a controlled experiment comparing crowd scores to those of experts and show that crowds can produce matrices with over 90% of cells scored correctly while reducing the number of cells to be scored by experts by 50%. Preparation time, including image collection and processing, for a crowdsourcing experiment is significant, and does not currently save time of scientific experts overall. However, if innovations in automation or robotics can reduce such effort, then large-scale implementation of our method could greatly increase the collective scientific knowledge of species phenotypes for phylogenetic tree building. For the field of crowdsourcing, we provide a rare study with ground truth, or an experimental control that many studies lack, and contribute new methods on how to coordinate the work of experts and nonexperts. We show that there are important instances in which crowd consensus is not a good proxy for correctness.


Subject(s)
Classification/methods , Crowdsourcing/standards , Phylogeny , Animals , Phenotype , Professional Competence , Reproducibility of Results
2.
Cladistics ; 32(1): 2-35, 2016 Feb.
Article in English | MEDLINE | ID: mdl-34732020

ABSTRACT

Molossidae is a large (roughly 100 species) pantropically distributed clade of swift aerially insectivorous bats for which the phylogeny remains relatively unknown and little studied compared with other speciose groups of bats. We investigated phylogenetic relationships among 62 species, representing all extant molossid genera and most of the subgenera, using 102 morphological characters from the skull, dentition, postcrania, external morphology, tongue, and penis, based on direct observation and literature reports. Both parsimony and Bayesian analyses were used in phylogenetic reconstruction. Our analysis supports two main clades of molossids, both of which mingle Old World and New World taxa. One clade is comprised of Mormopterus,Platymops, Sauromys, Neoplatymops, Molossops, Cynomops, Cheiromeles, Molossus, and Promops. The other clade includes Tadarida, Otomops, Nyctinomops, Eumops, Chaerephon, and Mops. The position of Myopterus with respect to these two groups is unclear. As in other recent analyses, we find that several genera do not appear to be monophyletic (e.g. Tadarida, Chaerephon, and Molossops sensu lato). We recommend that the subgenera of Molossops sensu lato and Austronomus be recognized at the generic level. We conclude that much more data are needed to investigate lower level problems (generic monophyly and relationships within genera) and to resolve the higher-level branching pattern of the family.

3.
Science ; 341(6146): 613, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23929968

ABSTRACT

Tree-building with diverse data maximizes explanatory power. Application of molecular clock models to ancient speciation events risks a bias against detection of fast radiations subsequent to the Cretaceous-Paleogene (K-Pg) event. Contrary to Springer et al., post-K-Pg placental diversification does not require "virus-like" substitution rates. Even constraining clade ages to their model, the explosive model best explains placental evolution.


Subject(s)
Biological Evolution , Fossils , Mammals , Phylogeny , Animals , Female , Pregnancy
4.
PLoS Curr ; 52013 Jun 26.
Article in English | MEDLINE | ID: mdl-23827969

ABSTRACT

The phenotype represents a critical interface between the genome and the environment in which organisms live and evolve. Phenotypic characters also are a rich source of biodiversity data for tree building, and they enable scientists to reconstruct the evolutionary history of organisms, including most fossil taxa, for which genetic data are unavailable. Therefore, phenotypic data are necessary for building a comprehensive Tree of Life. In contrast to recent advances in molecular sequencing, which has become faster and cheaper through recent technological advances, phenotypic data collection remains often prohibitively slow and expensive. The next-generation phenomics project is a collaborative, multidisciplinary effort to leverage advances in image analysis, crowdsourcing, and natural language processing to develop and implement novel approaches for discovering and scoring the phenome, the collection of phentotypic characters for a species. This research represents a new approach to data collection that has the potential to transform phylogenetics research and to enable rapid advances in constructing the Tree of Life. Our goal is to assemble large phenomic datasets built using new methods and to provide the public and scientific community with tools for phenomic data assembly that will enable rapid and automated study of phenotypes across the Tree of Life.

5.
Science ; 339(6120): 662-7, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23393258

ABSTRACT

To discover interordinal relationships of living and fossil placental mammals and the time of origin of placentals relative to the Cretaceous-Paleogene (K-Pg) boundary, we scored 4541 phenomic characters de novo for 86 fossil and living species. Combining these data with molecular sequences, we obtained a phylogenetic tree that, when calibrated with fossils, shows that crown clade Placentalia and placental orders originated after the K-Pg boundary. Many nodes discovered using molecular data are upheld, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea (elephants) and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats). Our tree suggests that Placentalia first split into Xenarthra and Epitheria; extinct New World species are the oldest members of Afrotheria.


Subject(s)
Biological Evolution , Fossils , Mammals , Phylogeny , Animals , Base Sequence , Dentition , Ecosystem , Extinction, Biological , Female , Mammals/anatomy & histology , Mammals/classification , Mammals/genetics , Paleodontology , Phylogeography , Placenta , Pregnancy , Sequence Alignment , Time , Xenarthra/anatomy & histology , Xenarthra/classification , Xenarthra/genetics
6.
Biol Rev Camb Philos Soc ; 87(4): 991-1024, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22891620

ABSTRACT

All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar-feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species-rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar-feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well-studied organisms such as phyllostomid bats.


Subject(s)
Adaptation, Physiological/genetics , Chiroptera/genetics , Genetic Speciation , Phylogeny , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...