Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Infect Dis ; 229(Supplement_2): S163-S171, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-37968965

ABSTRACT

BACKGROUND: In response to Mpox endemic and public health emergency, DCHHS aimed to develop NGS based techniques to streamline Mpox viral clade and lineage analysis. METHODS: The Mpox sequencing workflow started with DNA extraction and adapted Illumina's COVIDSeq assay using hMpox primer pools from Yale School of Public Health. Sequencing steps included cDNA amplification, tagmentation, PCR indexing, pooling libraries, sequencing on MiSeq, data analysis, and report generation. The bioinformatic analysis comprised read assembly and consensus sequence mapping to reference genomes and variant identification, and utilized pipelines including Illumina BaseSpace, NextClade, CLC Workbench, Terra.bio for data quality control (QC) and validation. RESULTS: In total, 171 mpox samples were sequenced using modified COVIDSeq workflow and QC metrics were assessed for read quality, depth, and coverage. Multiple analysis pipelines identified the West African clade IIb as the only clade during peak Mpox infection from July through October 2022. Analyses also indicated lineage B.1.2 as the dominant variant comprising the majority of Mpox viral genomes (77.7%), implying its geographical distribution in the United States. Viral sequences were uploaded to GISAID EpiPox. CONCLUSIONS: We developed NGS workflows to precisely detect and analyze mpox viral clade and lineages aiding in public health genomic surveillance.


Subject(s)
Mpox (monkeypox) , Humans , Genomics/methods , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Data Accuracy
2.
Pediatr Infect Dis J ; 39(12): 1092-1100, 2020 12.
Article in English | MEDLINE | ID: mdl-32773662

ABSTRACT

BACKGROUND: Ceftazidime-avibactam is an effective agent for the treatment of tuberculosis (TB) but requires frequent administration because of a short half-life. Due to a longer half-life, ceftriaxone could allow intermittent dosing. METHODS: First, we identified the MIC of ceftriaxone with 15 mg/L avibactam in 30 clinical Mycobacterium tuberculosis isolates. Next, 2 ceftriaxone exposure-effect studies in the intracellular hollow fiber model of TB (HFS-TB) that mimics disseminated disease in young children, were performed. Ceftriaxone was administered once or twice daily for 28 days to explore percentage of time that the concentration persisted above MIC (%TMIC) ranging from 0 to 100%. In a third HFS-TB experiment, the "double cephalosporin" regimen of ceftazidime-ceftriaxone-avibactam was examined and analyzed using Bliss Independence. CONCLUSION: The MIC99 of the clinical strains was 32 mg/L, in the presence of 15 mg/L avibactam. Ceftriaxone %TMIC <42 had no microbial effect in the HFS-TB, %TMIC >54% demonstrated a 4.1 log10 colony-forming units per milliliter M. tuberculosis kill, while %TMIC mediating Emax was 68%. The "double cephalosporin" combination was highly synergistic. Monte Carlo experiments of 10,000 subjects identified the optimal ceftriaxone dose as 100 mg/kg twice a day. CONCLUSION: The combination of ceftriaxone-avibactam at 100 mg/kg could achieve Emax in >90% of children. The ceftriaxone potent activity M. tuberculosis could potentially shorten therapy in children with disseminated TB.


Subject(s)
Antitubercular Agents , Azabicyclo Compounds , Ceftriaxone , Mycobacterium tuberculosis/drug effects , Tuberculosis, Meningeal/microbiology , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/pharmacology , Azabicyclo Compounds/pharmacokinetics , Azabicyclo Compounds/pharmacology , Ceftriaxone/pharmacokinetics , Ceftriaxone/pharmacology , Humans , Infant , Infant, Newborn , Microbial Sensitivity Tests , Models, Biological
3.
J Antimicrob Chemother ; 75(5): 1212-1217, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32016429

ABSTRACT

BACKGROUND: The current treatment regimens recommended for Mycobacterium abscessus subspecies abscessus (Mab) pulmonary disease are not effective. We identified 16 drugs with potential to build new regimens, translating to 560 possible three-drug combination regimens. OBJECTIVES: To determine MICs and efficacy of drugs from different antibiotic classes for treatment against Mab, in order to winnow down the potential drugs for combination therapy to tractable numbers, for future use in hollow-fibre studies. METHODS: The MICs of levofloxacin, minocycline, meropenem, imipenem, tedizolid, bedaquiline, azithromycin, clarithromycin, amikacin, vancomycin, delafloxacin, tebipenem/avibactam and omadacycline were determined for 20 Mab isolates. In addition, concentration-response studies with tedizolid, bedaquiline, clarithromycin, amikacin, tebipenem/avibactam, cefdinir, faropenem, omadacycline and daunorubicin were performed and data were fitted to the inhibitory sigmoid Emax model. Efficacy was defined as maximal kill, expressed as cfu/mL kill below day 0 burden. RESULTS: The lowest MICs among the 13 antibiotics were of bedaquiline, tebipenem/avibactam and omadacycline. The antibiotics that killed Mab below the day 0 burden were the anticancer agent daunorubicin (3.36 log10 cfu/mL), cefdinir (1.85 log10 cfu/mL), faropenem (2.48 log10 cfu/mL) and tebipenem/avibactam (1.71 log10 cfu/mL kill). The EC50 values of these drugs were 11.67, 9.52, 48.2 and 0.33 mg/L, respectively, below peak concentrations of these drugs. CONCLUSIONS: The low MICs and efficacy at clinically achievable concentrations mean that tebipenem/avibactam, daunorubicin, omadacycline and bedaquiline give a view of components of a three-drug regimen likely to effectively kill Mab. We propose pharmacokinetic/pharmacodynamic studies to identify such a regimen and the doses to be combined.


Subject(s)
Mycobacterium abscessus , Pharmaceutical Preparations , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Repositioning , Microbial Sensitivity Tests
4.
Front Pharmacol ; 11: 616294, 2020.
Article in English | MEDLINE | ID: mdl-33542690

ABSTRACT

Background: Mycobacterium tuberculosis [Mtb] could be present in different metabolic population in the lung lesions, and nonreplicating persisters [NRP], associated with latent tuberculosis [TB], are the most difficult to kill. Objective: Test the combination of tedizolid, moxifloxacin, and faropenem for activity against NRP using Mtb SS18b in the hollow fiber model [HFS-TB]. Methods: Tedizolid and moxifloxacin were tested as, first, two-drug combination against log-phase growth [LPG] and, second, slowly replicating bacilli [SRB] under acidic condition and with faropenem to create a three-drug combination regimen. Finally, standard regimen [isoniazid-rifampin-pyrazinamide] was used as comparator in the HFS-TB experiment with NRP Mtb. HFS-TB units were sampled for drug-concentration measurement as well as for estimation of bacterial burden using solid agar and mycobacterial growth indicator tube [MGIT] method. Linear regression was used to calculate the kill slopes with each treatment regimen and analysis of variance (ANOVA) to compare the regimen. Results: Tedizolid at standard dose in combination with high-dose moxifloxacin killed 3.05 log10 CFU/ml LPG Mtb and 7.37 log10 CFU/ml SRB in the bactericidal and sterilizing activity HFS-TB experiments, respectively. There was no statistical difference between tedizolid-moxifloxacin-faropenem combination and the standard regimen as both killed 7.35 log10 CFU/ml NRP Mtb in 21 days. There was no emergence of resistance to any of the drugs studied in the three HFS-TB experiments. Conclusion: The experimental regimen of tedizolid, moxifloxacin, and faropenem could effectively kill NRP population of Mtb, and given the efficacy against different metabolic population of Mtb could serve as a pan-TB regimen. Clinical studies are warranted to validate the in vitro findings.

5.
J Antimicrob Chemother ; 75(2): 392-399, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31713607

ABSTRACT

OBJECTIVES: Animal models have suggested that the combination of pretomanid with pyrazinamide and moxifloxacin (PaMZ) may shorten TB therapy duration to 3-4 months. Here, we tested that in the hollow-fibre system model of TB (HFS-TB). METHODS: A series of HFS-TB experiments were performed to compare the kill rates of the PaMZ regimen with the standard three-drug combination therapy. HFS-TB experiments were performed with bacilli in log-phase growth treated for 28 days, intracellular bacilli treated daily for 28 days and semi-dormant Mycobacterium tuberculosis treated with daily therapy for 56 days for sterilizing effect. Next, time-to-extinction equations were employed, followed by morphism transformation and Latin hypercube sampling, to determine the proportion of patients who achieved a time to extinction of 3, 4 or 6 months with each regimen. RESULTS: Using linear regression, the HFS-TB sterilizing effect rates of the PaMZ regimen versus the standard-therapy regimen during the 56 days were 0.18 (95% credible interval=0.13-0.23) versus 0.15 (95% credible interval=0.08-0.21) log10 cfu/mL/day, compared with 0.16 (95% credible interval=0.13-0.18) versus 0.11 (95% credible interval=0.09-0.13) log10 cfu/mL/day in the Phase II clinical trial, respectively. Using time-to-extinction and Latin hypercube sampling modelling, the expected percentages of patients in which the PaMZ regimen would achieve sterilization were 40.37% (95% credible interval=39.1-41.34) and 72.30% (95% credible interval=71.41-73.17) at 3 and 4 months duration of therapy, respectively, versus 93.67% (95% credible interval=93.18-94.13) at 6 months for standard therapy. CONCLUSIONS: The kill rates of the PaMZ regimen were predicted to be insufficient to achieve cure in less than 6 months in most patients.


Subject(s)
Moxifloxacin/therapeutic use , Mycobacterium tuberculosis/drug effects , Nitroimidazoles/therapeutic use , Pyrazinamide/therapeutic use , Tuberculosis/drug therapy , Antitubercular Agents/therapeutic use , Drug Therapy, Combination , Humans , Mathematics
6.
J Antimicrob Chemother ; 74(6): 1607-1617, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30820554

ABSTRACT

BACKGROUND: MDR-TB and XDR-TB have poor outcomes. OBJECTIVES: To examine the efficacy of tigecycline monotherapy in the hollow fibre system model of TB. METHODS: We performed pharmacokinetic/pharmacodynamic studies using tigecycline human-like concentration-time profiles in the hollow fibre system model of TB in five separate experiments using Mycobacterium tuberculosis in log-phase growth or as semi-dormant or intracellular bacilli, as monotherapy. We also compared efficacy with the isoniazid/rifampicin/pyrazinamide combination (standard therapy). We then applied extinction mathematics, morphisms and Latin hypercube sampling to identify duration of therapy with tigecycline monotherapy. RESULTS: The median tigecycline MIC for 30 M. tuberculosis clinical and laboratory isolates (67% MDR/XDR) was 2 mg/L. Tigecycline monotherapy was highly effective in killing M. tuberculosis in log-phase-growth and semi-dormant and intracellular M. tuberculosis. Once-a-week dosing had the same efficacy as daily therapy for the same cumulative dose; thus, tigecycline efficacy was linked to the AUC0-24/MIC ratio. Tigecycline replacement by daily minocycline after 4 weeks of therapy was effective in sterilizing bacilli. The AUC0-24/MIC ratio associated with optimal kill was 42.3. Tigecycline monotherapy had a maximum sterilizing effect (day 0 minus day 28) of 3.06 ±âŸ0.20 log10 cfu/mL (r2 = 0.92) compared with 3.92 ±âŸ0.45 log10 cfu/mL (r2 = 0.80) with optimized standard therapy. In our modelling, at a tigecycline monotherapy duration of 12 months, the proportion of patients with XDR-TB who reached bacterial population extinction was 64.51%. CONCLUSIONS: Tigecycline could cure patients with XDR-TB or MDR-TB who have failed recommended therapy. Once-a-week tigecycline could also replace second-line injectables in MDR-TB regimens.


Subject(s)
Antitubercular Agents/administration & dosage , Mycobacterium tuberculosis/drug effects , Tigecycline/administration & dosage , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Antitubercular Agents/pharmacokinetics , Drug Administration Schedule , Drug Monitoring , Drug Therapy, Combination , Humans , Microbial Sensitivity Tests , Models, Theoretical , Monte Carlo Method , Tigecycline/pharmacokinetics , Tissue Distribution
7.
Clin Infect Dis ; 67(suppl_3): S342-S348, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30496456

ABSTRACT

Background: Children are often neglected during early development of antituberculosis agents, and most receive treatment after it is first tested in adults. However, very young children have tuberculosis that differs in many respects from adult cavitary pneumonia and could have different toxicity profiles to drugs. Linezolid is effective against intracellular tuberculosis, a common manifestation in young children. However, linezolid has considerable toxicity due to inhibition of mitochondrial enzymes. Tedizolid could be a replacement if it shows equal efficacy and reduced toxicity. Methods: We performed tedizolid dose-effect studies in the hollow fiber system model of intracellular tuberculosis. We measured linezolid concentrations, colony-forming units (CFU), time-to-positivity, and monocyte viability and performed RNA sequencing on infected cells collected from repetitive sampling of each system. We also compared efficacy of tedizolid vs linezolid and vs tedizolid-moxifloxacin combination. Results: There was no downregulation of mitochondrial enzyme genes, with a tedizolid 0-24 hour area under the concentration-time curve (AUC0-24) of up to 90 mg*h/L. Instead, high exposures led to increased mitochondrial gene expression and monocyte survival. The AUC0-24 to minimum inhibitory concentration ratio associated with 80% of maximal bacterial kill (EC80) was 184 by CFU/mL (r2 = 0.96) and 189 by time-to-positivity (r2 = 0.99). Tedizolid EC80 killed 4.0 log10 CFU/mL higher than linezolid EC80. The tedizolid-moxifloxacin combination had a bacterial burden elimination rate constant of 0.27 ± 0.05 per day. Conclusions: Tedizolid demonstrated better efficacy than linezolid, without the mitochondrial toxicity gene or cytotoxicity signatures encountered with linezolid. Tedizolid-moxifloxacin combination had a high bacterial elimination rate.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Moxifloxacin/pharmacokinetics , Mycobacterium tuberculosis/drug effects , Oxazolidinones/pharmacokinetics , Tetrazoles/pharmacokinetics , Tuberculosis/drug therapy , Anti-Bacterial Agents/therapeutic use , Child , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Moxifloxacin/therapeutic use , Oxazolidinones/therapeutic use , Tetrazoles/therapeutic use , Tuberculosis/microbiology
8.
Clin Infect Dis ; 67(suppl_3): S336-S341, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30496463

ABSTRACT

Background: Linezolid exhibits remarkable sterilizing effect in tuberculosis; however, a large proportion of patients develop serious adverse events. The congener tedizolid could have a better side-effect profile, but its sterilizing effect potential is unknown. Methods: We performed a 42-day tedizolid exposure-effect and dose-fractionation study in the hollow fiber system model of tuberculosis for sterilizing effect, using human-like intrapulmonary pharmacokinetics. Bacterial burden was examined using time to positivity (TTP) and colony-forming units (CFUs). Exposure-effect was examined using the inhibitory sigmoid maximal kill model. The exposure mediating 80% of maximal kill (EC80) was defined as the target exposure, and the lowest dose to achieve EC80 was identified in 10000-patient Monte Carlo experiments. The dose was also examined for probability of attaining concentrations associated with mitochondrial enzyme inhibition. Results: At maximal effect, tedizolid monotherapy totally eliminated 7.1 log10 CFU/mL Mycobacterium tuberculosis over 42 days; however, TTP still demonstrated some growth. Once-weekly tedizolid regimens killed as effectively as daily regimens, with an EC80 free drug 0- to 24-hour area under the concentration-time curve-to-minimum inhibitory concentration (MIC) ratio of 200. An oral tedizolid of 200 mg/day achieved the EC80 in 92% of 10000 patients. The susceptibility breakpoint was an MIC of 0.5 mg/L. The 200 mg/day dose did not achieve concentrations associated with mitochondrial enzyme inhibition. Conclusions: Tedizolid exhibits dramatic sterilizing effect and should be examined for pulmonary tuberculosis. A tedizolid dose of 200 mg/day or 700 mg twice a week is recommended for testing in patients; the intermittent tedizolid dosing schedule could be much safer than daily linezolid.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Linezolid/pharmacokinetics , Mycobacterium tuberculosis/drug effects , Oxazolidinones/pharmacokinetics , Tetrazoles/pharmacokinetics , Tuberculosis, Pulmonary/drug therapy , Anti-Bacterial Agents/administration & dosage , Humans , Linezolid/administration & dosage , Microbial Sensitivity Tests , Monte Carlo Method , Oxazolidinones/administration & dosage , Tetrazoles/administration & dosage
9.
Article in English | MEDLINE | ID: mdl-29180526

ABSTRACT

The modern chemotherapy era started with Fleming's discovery of benzylpenicillin. He demonstrated that benzylpenicillin did not kill Mycobacterium tuberculosis In this study, we found that >64 mg/liter of static benzylpenicillin concentrations killed 1.16 to 1.43 log10 CFU/ml below starting inoculum of extracellular and intracellular M. tuberculosis over 7 days. When we added the ß-lactamase inhibitor avibactam, benzylpenicillin maximal kill (Emax) of extracellular log-phase-growth M. tuberculosis was 6.80 ± 0.45 log10 CFU/ml at a 50% effective concentration (EC50) of 15.11 ± 2.31 mg/liter, while for intracellular M. tuberculosis it was 2.42 ± 0.14 log10 CFU/ml at an EC50 of 6.70 ± 0.56 mg/liter. The median penicillin (plus avibactam) MIC against South African clinical M. tuberculosis strains (80% either multidrug or extensively drug resistant) was 2 mg/liter. We mimicked human-like benzylpenicillin and avibactam concentration-time profiles in the hollow-fiber model of tuberculosis (HFS-TB). The percent time above the MIC was linked to effect, with an optimal exposure of ≥65%. At optimal exposure in the HFS-TB, the bactericidal activity in log-phase-growth M. tuberculosis was 1.44 log10 CFU/ml/day, while 3.28 log10 CFU/ml of intracellular M. tuberculosis was killed over 3 weeks. In an 8-week HFS-TB study of nonreplicating persistent M. tuberculosis, penicillin-avibactam alone and the drug combination of isoniazid, rifampin, and pyrazinamide both killed >7.0 log10 CFU/ml. Monte Carlo simulations of 10,000 preterm infants with disseminated disease identified an optimal dose of 10,000 U/kg (of body weight)/h, while for pregnant women or nonpregnant adults with pulmonary tuberculosis the optimal dose was 25,000 U/kg/h, by continuous intravenous infusion. Penicillin-avibactam should be examined for effect in pregnant women and infants with drug-resistant tuberculosis, to replace injectable ototoxic and teratogenic second-line drugs.


Subject(s)
Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Penicillin G/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Adult , Azabicyclo Compounds/therapeutic use , Cell Line , Drug Combinations , Female , Humans , Isoniazid/therapeutic use , Microbial Sensitivity Tests/methods , Monte Carlo Method , Pregnancy , Pyrazinamide/therapeutic use , Rifampin/therapeutic use
10.
Sci Adv ; 3(8): e1701102, 2017 08.
Article in English | MEDLINE | ID: mdl-28875168

ABSTRACT

There are currently many patients with multidrug-resistant and extensively drug-resistant tuberculosis. Ongoing transmission of the highly drug-resistant strains and high mortality despite treatment remain problematic. The current strategy of drug discovery and development takes up to a decade to bring a new drug to clinical use. We embarked on a strategy to screen all antibiotics in current use and examined them for use in tuberculosis. We found that ceftazidime-avibactam, which is already used in the clinic for multidrug-resistant Gram-negative bacillary infections, markedly killed rapidly growing, intracellular, and semidormant Mycobacterium tuberculosis in the hollow fiber system model. Moreover, multidrug-resistant and extensively drug-resistant clinical isolates demonstrated good ceftazidime-avibactam susceptibility profiles and were inhibited by clinically achievable concentrations. Resistance arose because of mutations in the transpeptidase domain of the penicillin-binding protein PonA1, suggesting that the drug kills M. tuberculosis bacilli via interference with cell wall remodeling. We identified concentrations (exposure targets) for optimal effect in tuberculosis, which we used with susceptibility results in computer-aided clinical trial simulations to identify doses for immediate clinical use as salvage therapy for adults and young children. Moreover, this work provides a roadmap for efficient and timely evaluation of antibiotics and optimization of clinically relevant dosing regimens.


Subject(s)
Antitubercular Agents/pharmacology , Azabicyclo Compounds/pharmacology , Ceftazidime/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Age Factors , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/pharmacokinetics , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/pharmacokinetics , Ceftazidime/administration & dosage , Ceftazidime/pharmacokinetics , Cell Line , Dose-Response Relationship, Drug , Drug Combinations , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Genome, Bacterial , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/isolation & purification , Treatment Outcome
11.
J Antimicrob Chemother ; 72(suppl_2): i36-i42, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28922808

ABSTRACT

OBJECTIVES: To determine if ceftaroline and ceftazidime combined with avibactam are efficacious against pulmonary Mycobacterium avium complex (MAC) disease. METHODS: First, we performed a concentration-effect study of ceftaroline and ceftaroline/avibactam against extracellular MAC in test tubes. Given the difficulty of obtaining avibactam at the time of experimentation, we used a single concentration of commercial ceftazidime/avibactam, and two sets of non-treated controls, one with ceftazidime/avibactam and the other without. After finding antimicrobial activity with the ceftazidime/avibactam 'control', we performed ceftazidime/avibactam dose-effect studies in test tubes against extracellular MAC and in 24-well plates against intracellular MAC. We then performed a ceftazidime/avibactam exposure-effect and dose-fractionation studies in the hollow-fibre system model of intracellular pulmonary MAC (HFS-MAC). In each experiment, we repetitively sampled each HFS-MAC at specified times to validate ceftazidime/avibactam pharmacokinetics and to quantify bacterial burden. RESULTS: Ceftaroline killed extracellular MAC with maximal microbial kill (Emax) of 4.87 ±âŸ0.26 log10 cfu/mL. However, the ceftazidime/avibactam 'control' also killed MAC compared with the non-treated control. Ceftazidime/avibactam Emax was 3.8 log10 cfu/mL against extracellular bacilli and 3.6 log10 cfu/mL against intracellular MAC. In the HFS-MAC, ceftazidime/avibactam achieved a half-life of 2.5-3.3 h and killed MAC 0.61-2.40 log10 cfu/mL below the starting bacterial burden. The ceftazidime/avibactam efficacy was linked to the proportion of the dosing interval for which the concentration persists above the MIC (fT>MIC), with optimal efficacy at free-drug fT>MIC of 52% (r2 = 0.95). CONCLUSIONS: Ceftazidime/avibactam effectively kills MAC at exposures easily achieved in the lung by clinical doses. Efficacy was higher than with clinically achievable doses of azithromycin and ethambutol.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Ceftazidime/pharmacology , Cephalosporins/pharmacology , Mycobacterium avium/drug effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/pharmacokinetics , Ceftazidime/administration & dosage , Ceftazidime/pharmacokinetics , Cephalosporins/administration & dosage , Cephalosporins/pharmacokinetics , Drug Combinations , Humans , Microbial Sensitivity Tests , Models, Biological , THP-1 Cells , Ceftaroline
12.
EBioMedicine ; 6: 126-138, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27211555

ABSTRACT

Treatment of disseminated tuberculosis in children≤6years has not been optimized. The pyrazinamide-containing combination regimen used to treat disseminated tuberculosis in babies and toddlers was extrapolated from adult pulmonary tuberculosis. Due to hepatotoxicity worries, there are no dose-response studies in children. We designed a hollow fiber system model of disseminated intracellular tuberculosis with co-perfused three-dimensional organotypic liver modules to simultaneously test for efficacy and toxicity. We utilized pediatric pharmacokinetics of pyrazinamide and acetaminophen to determine dose-dependent pyrazinamide efficacy and hepatotoxicity. Acetaminophen concentrations that cause hepatotoxicity in children led to elevated liver function tests, while 100mg/kg pyrazinamide did not. Surprisingly, pyrazinamide did not kill intracellular Mycobacterium tuberculosis up to fourfold the standard dose as monotherapy or as combination therapy, despite achieving high intracellular concentrations. Host-pathogen RNA-sequencing revealed lack of a pyrazinamide exposure transcript signature in intracellular bacteria or of phagolysosome acidification on pH imaging. Artificial intelligence algorithms confirmed that pyrazinamide was not predictive of good clinical outcomes in children≤6years who had extrapulmonary tuberculosis. Thus, adding a drug that works inside macrophages could benefit children with disseminated tuberculosis. Our in vitro model can be used to identify such new regimens that could accelerate cure while minimizing toxicity.


Subject(s)
Antitubercular Agents/administration & dosage , Chemical and Drug Induced Liver Injury/physiopathology , Pyrazinamide/administration & dosage , Tuberculosis/drug therapy , Acetaminophen/pharmacokinetics , Acetaminophen/toxicity , Antitubercular Agents/adverse effects , Antitubercular Agents/pharmacokinetics , Cell Line , Child, Preschool , Coculture Techniques , Humans , Infant , Infant, Newborn , Models, Biological , Mycobacterium tuberculosis/drug effects , Pyrazinamide/adverse effects , Pyrazinamide/pharmacokinetics , Toxicity Tests , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...