Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Dyn ; 250(1): 99-110, 2021 01.
Article in English | MEDLINE | ID: mdl-32893414

ABSTRACT

BACKGROUND: To identify novel myofibrillar components of the Drosophila flight muscles, we carried out a proteomic analysis of chemically demembranated flight muscle myofibrils, and characterized the knockdown phenotype of a novel gene identified in the screen, CG1674. RESULTS: The CG1674 protein has some similarity to vertebrate synaptopodin 2-like, and when expressed as a FLAG-tagged fusion protein, it was localized during development to the Z-disc and cytoplasm. Knockdown of CG1674 expression affected the function of multiple muscle types, and defective flight in adults was accompanied by large actin-rich structures in the flight muscles that resembled overgrown Z-discs. Localization of CG1674 to the Z-disc depended predominantly upon presence of the Z-disc component alpha-actinin, but also depended upon other Z-disc components, including Mask, Zasp52, and Sals. We also observed re-localization of FLAG-CG1674 to the nucleus in Alpha-actinin and sals knockdown animals. CONCLUSIONS: These studies identify and characterize a previously unreported myofibrillar component of Drosophila muscle that is necessary for proper myofibril assembly during development.


Subject(s)
Drosophila/genetics , Microfilament Proteins/genetics , Muscle Development , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Microfilament Proteins/metabolism , Muscles/metabolism , Proteome
2.
Biochem Mol Biol Educ ; 44(3): 263-75, 2016 05 06.
Article in English | MEDLINE | ID: mdl-27009801

ABSTRACT

CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a three-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:263-275, 2016.


Subject(s)
CRISPR-Cas Systems/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Gene Targeting/methods , Molecular Biology/education , RNA Editing/genetics , Amino Acid Sequence , Animals , Base Sequence , Female , Genetic Engineering , Genome, Insect , Male , Mutation/genetics , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...