Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1833(3): 552-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23098853

ABSTRACT

The exact mechanism by which ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) inhibits insulin signaling is not known. ENPP1 contains two somatomedin-B-like domains (i.e. SMB 1 and 2) involved in ENPP1 dimerization in animal cells. The aim of the present study was to investigate if these domains modulate ENPP1 inhibitory activity on insulin signaling in human insulin target cells (HepG2). ENPP1 (ENPP1-3'myc), ENPP1 deleted of SMB 1 (ENPP1-ΔI-3'myc) or of SMB 2 (ENPP1-ΔII-3'myc) domain were cloned in frame with myc tag in mammalian expression vector pRK5. Plasmids were transiently transfected in human liver HepG2 cells. ENPP1 inhibitory activity on insulin signaling, dimerization and protein-protein interaction with insulin receptor (IR), reported to mediate the modulation of ENPP1 inhibitory activity, were studied. As compared to untransfected cells, a progressive increase of ENPP1 inhibitory activity on insulin-induced IR ß-subunit autophosphorylation and on Akt-S(473) phosphorylation was observed in ENPP1-3'myc, ENPP1-ΔI-3'myc and ENPP1-ΔII-3'myc cells. Under non reducing conditions a 260 kDa homodimer, indicating ENPP1 dimerization, was observed. The ratio of non reduced (260 kDa) to reduced (130 kDa) ENPP1 was significantly decreased by two thirds in ENPP1-ΔII-3'myc vs. ENPP1-3'myc but not in ENPP1-ΔI-3'myc. A similar ENPP1/IR interaction was detectable by co-immunoprecipitation in ENPP1-3'myc, ENPP1-ΔI-3'myc and ENPP1-ΔII-3'myc cells. In conclusion, SMB 1 and SMB 2 are negative modulators of ENPP1 inhibitory activity on insulin signaling. For SMB 2 such effect might be mediated by a positive role on protein dimerization.


Subject(s)
Insulin/metabolism , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Receptor, Insulin/metabolism , Signal Transduction , Somatomedins/metabolism , Blotting, Western , Hep G2 Cells , Humans , Immunoprecipitation , Insulin/chemistry , Phosphoric Diester Hydrolases/genetics , Phosphorylation , Plasmids , Protein Multimerization , Protein Structure, Tertiary , Pyrophosphatases/genetics
3.
Thyroid ; 12(11): 945-51, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12490071

ABSTRACT

Congenital hypothyroidism (CH) may cause severe and irreversible neurologic and developmental abnormalities when not recognized early. Many millions of newborns have now been screened and many thousands of patients with CH have been identified. Approximately 80%-85% have defects of thyroid gland development, while 15%-20% have congenital errors of thyroid hormone biosynthesis. An entire population screened for CH over a long period of time, was studied in the present report, using a population-based approach. In particular, two CH phenotypes, both presenting with in situ thyroid gland (patients with either goiter or with thyroid gland volume ranging from normal to hypoplasic) were analyzed. Mutations were searched in some of the most likely candidate genes: thyroperoxidase (TPO) in patients with CH goiter, Pax8 and thyrotropin receptor (TSHR) in the other group. In the former group (n = 8), four TPO gene mutations were identified in three patients. One patient was a compound heterozygous. In two cases an already described mutation (1277(insGGCC)) was present; in two other cases mutations not previously described (1996(G-->T) and 2295(G-->A)), which induced aminoacid variations with a Glu --> Stop and Val --> Ile changes, respectively, were identified. In all patients mutations were inherited from one of the parents. In the case of the compound heterozygous patient, one mutation was inherited from the mother (1277(insGGCC)) and the other from the father (1996(G-->T), Glu --> Stop). In the latter group (n = 8), a patient with a 16-base pair C(T)(13)CC deletion in TSHR gene intron 8, 42-bp distal to exon/intron 8 splice junction, was identified. No mutation was identified in Pax8 gene.


Subject(s)
Genetic Testing , Hypothyroidism/genetics , Nuclear Proteins , Congenital Hypothyroidism , DNA-Binding Proteins/genetics , Goiter/congenital , Goiter/genetics , Goiter/pathology , Humans , Hypothyroidism/pathology , Infant, Newborn , PAX8 Transcription Factor , Paired Box Transcription Factors , Phenotype , Polymorphism, Single Nucleotide , Population , Receptors, Thyrotropin/genetics , Thyroid Gland/pathology , Trans-Activators/genetics
4.
Am J Hum Genet ; 70(3): 806-12, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11833006

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) inhibits insulin signaling and, when overexpressed, plays a role in insulin resistance (Ahmad et al. 1997). We identified, in the 3' untranslated region of the PTP1B gene, a 1484insG variation that, in two different populations, is associated with several features of insulin resistance: among male individuals, higher values of the insulin resistance HOMA(IR) index (P=.006), serum triglycerides (P=.0002), and total/HDL cholesterol ratio (P=.025) and, among female individuals, higher blood pressure (P=.01). Similar data were also obtained in a family-based association study by use of sib pairs discordant for genotype (Gu et al. 2000). Subjects carrying the 1484insG variant showed also PTP1B mRNA overexpression in skeletal muscle (6,166 plus minus 1,879 copies/40 ng RNA vs. 2,983 plus minus 1,620; P<.01). Finally, PTP1B mRNA stability was significantly higher (P<.01) in human embryo kidney 293 cells transfected with 1484insG PTP1B, as compared with those transfected with wild-type PTP1B. Our data indicate that the 1484insG allele causes PTP1B overexpression and plays a role in insulin resistance. Therefore, individuals carrying the 1484insG variant might particularly benefit from PTP1B inhibitors, a promising new tool for treatment of insulin resistance (Kennedy and Ramachandran 2000).


Subject(s)
3' Untranslated Regions/genetics , Gene Expression Regulation , Insulin Resistance/genetics , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Protein Tyrosine Phosphatases/genetics , Adult , Blood Glucose/analysis , Blood Pressure/genetics , Cell Line , Cholesterol/blood , Dactinomycin/pharmacology , Exons/genetics , Fasting/blood , Female , Gene Expression Regulation/drug effects , Gene Frequency , Genotype , Humans , Insulin/blood , Introns/genetics , Male , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , RNA Stability/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...