Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39065869

ABSTRACT

Compact, energy-efficient, and autonomous wireless sensor nodes offer incredible versatility for various applications across different environments. Although these devices transmit and receive real-time data, efficient energy storage (ES) is crucial for their operation, especially in remote or hard-to-reach locations. Rechargeable batteries are commonly used, although they often have limited storage capacity. To address this, ultra-low-power design techniques (ULPDT) can be implemented to reduce energy consumption and prolong battery life. The Energy Harvesting Technique (EHT) enables perpetual operation in an eco-friendly manner, but may not fully replace batteries due to its intermittent nature and limited power generation. To ensure uninterrupted power supply, devices such as ES and power management unit (PMU) are needed. This review focuses on the importance of minimizing power consumption and maximizing energy efficiency to improve the autonomy and longevity of these sensor nodes. It examines current advancements, challenges, and future direction in ULPDT, ES, PMU, wireless communication protocols, and EHT to develop and implement robust and eco-friendly technology solutions for practical and long-lasting use in real-world scenarios.

2.
Sensors (Basel) ; 22(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36298261

ABSTRACT

Geomatics is important for agriculture 4.0; in fact, it uses different types of data (remote sensing from satellites, Unmanned Aerial Vehicles-UAVs, GNSS, photogrammetry, laser scanners and other types of data) and therefore it uses data fusion techniques depending on the different applications to be carried out. This work aims to present on a study area concerning the integration of data acquired (using data fusion techniques) from remote sensing techniques, UAVs, autonomous driving machines and data fusion, all reprocessed and visualised in terms of results obtained through GIS (Geographic Information System). In this work we emphasize the importance of the integration of different methodologies and data fusion techniques, managing data of a different nature acquired with different methodologies to optimise vineyard cultivation and production. In particular, in this note we applied (focusing on a vineyard) geomatics-type methodologies developed in other works and integrated here to be used and optimised in order to make a contribution to agriculture 4.0. More specifically, we used the NDVI (Normalized Difference Vegetation Index) applied to multispectral satellite images and drone images (suitably combined) to identify the vigour of the plants. We then used an autonomous guided vehicle (equipped with sensors and monitoring systems) which, by estimating the optimal path, allows us to optimise fertilisation, irrigation, etc., by data fusion techniques using various types of sensors. Everything is visualised on a GIS to improve the management of the field according to its potential, also using historical data on the environmental, climatic and socioeconomic characteristics of the area. For this purpose, experiments of different types of Geomatics carried out individually on other application cases have been integrated into this work and are coordinated and integrated here in order to provide research/application cues for Agriculture 4.0.


Subject(s)
Agriculture , Remote Sensing Technology , Remote Sensing Technology/methods , Agriculture/methods , Geographic Information Systems , Farms , Plants
3.
Nanomaterials (Basel) ; 12(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889702

ABSTRACT

Schottky diode (SD) has seen great improvements in the past few decades and, for many THz applications, it is the most useful device. However, the use and recycling of forms of energy such as solar energy and the infrared thermal radiation that the Earth continuously emits represent one of the most relevant and critical issues for this diode, which is unable to rectify signals above 5 THz. The goal is to develop highly efficient diodes capable of converting radiation from IR spectra to visible ones in direct current (DC). A set of performance criteria is investigated to select some of the most prominent materials required for developing innovative types of electrodes, but also a wide variety of insulator layers is required for the rectification process, which can affect the performance of the device. The current rectifying devices are here reviewed according to the defined performance criteria. The main aim of this review is to provide a wide overview of recent research progress, specific issues, performance, and future directions in THz rectifier technology based on quantum mechanical tunneling and asymmetric structure.

4.
Sensors (Basel) ; 19(8)2019 Apr 13.
Article in English | MEDLINE | ID: mdl-31013890

ABSTRACT

The proposed work aims at exploring and developing new strategies to extend mission parameters (measured as travel distance and mission duration (MD)) of a new class of unmanned vehicles, named Micro Air Vehicles (MAVs). In this paper, a new analytical model, identifying all factors, which determine the MAV power consumption, is presented. Starting from the new model, the design of a nanoarray energy harvester, based on plasmonics nano-antenna technology is proposed. The preliminary study was based on a 22,066,058 22,066,058 × 62,800-dipole rectenna array producing an output power level of 84.14 mW, and an energy value of 2572 J under a power density of 100 mW/cm² and a resonant frequency of 350 THz as input conditions. The preliminary analytical results show a possible recharge of an ultra-fast rechargeable battery on board of a MAV and an MD improvement of 16.30 min.

SELECTION OF CITATIONS
SEARCH DETAIL