Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Behav Brain Res ; 460: 114754, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-37981125

ABSTRACT

Parkinson disease (PD) causes voice and swallow dysfunction even in early stages of the disease. Treatment of this dysfunction is limited, and the neuropathology underlying this dysfunction is poorly defined. Targeted exercise provides the greatest benefit for offsetting voice and swallow dysfunction, and previous data suggest the hypoglossal nucleus and noradrenergic-locus coeruleus (LC) may be involved in its early pathology. To investigate relationships between targeted exercise and neuropathology of voice and swallow dysfunction, we implemented a combined exercise paradigm that included tongue force and vocalization exercises early in the Pink1-/- rat model. We tested the hypotheses that (1) tongue and vocal exercise improves tongue force and timing behaviors and vocalization outcomes, and (2) exercise increases optical density of serotonin (5-HT) in the hypoglossal nucleus, and tyrosine hydroxylase immunoreactive (Th-ir) cell counts in the LC. At two months of age Pink1-/- rats were randomized to exercise or non-exercise treatment. Age-matched wildtype (WT) control rats were assigned to non-exercise treatment. Tongue force and timing behaviors and ultrasonic vocalizations were measured at baseline (two months) and final (four months) timepoints. Optical density of 5-HT in the hypoglossal nucleus and TH-ir cell counts in the LC were obtained. Pink1-/- rats produced greater tongue forces, faster tongue contraction, and higher-intensity vocalization following exercise. There were no differences in LC TH-ir. The non-exercised Pink1-/- group had reduced density of 5-HT in the hypoglossal nucleus compared to the WT control group. The changes to tongue function and vocalization after targeted exercise suggests exercise intervention may be beneficial in early PD.


Subject(s)
Parkinson Disease , Animals , Rats , Exercise Therapy , Serotonin , Tongue , Ultrasonics
2.
Curr Phys Med Rehabil Rep ; 11(2): 176-187, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37608845

ABSTRACT

Purpose of Review: Dysphagia affects the majority of individuals with Parkinson disease (PD) and is not typically diagnosed until later in disease progression. This review will cover the current understanding of PD pathophysiology, and provides an overview of dysphagia in PD including diagnostic practices, gaps in knowledge, and future directions. Recent Findings: Many non-motor and other motor signs of PD appear in the prodrome prior to the manifestation of hall- mark signs and diagnosis. While dysphagia often presents already in the prodrome, it is not routinely addressed in standard neurology examinations. Summary: Dysphagia in PD can result in compromised efficiency and safety of swallowing, which significantly contributes to malnutrition and dehydration, decrease quality of life, and increase mortality. The heterogeneous clinical presentation of PD complicates diagnostic procedures which often leads to delayed treatment. Research has advanced our knowledge of mechanisms underlying PD, but dysphagia is still largely understudied, especially in the prodromal stage.

3.
Dysphagia ; 38(5): 1382-1397, 2023 10.
Article in English | MEDLINE | ID: mdl-36949296

ABSTRACT

Early motor and non-motor signs of Parkinson disease (PD) include dysphagia, gastrointestinal dysmotility, and constipation. However, because these often manifest prior to formal diagnosis, the study of PD-related swallow and GI dysfunction in early stages is difficult. To overcome this limitation, we used the Pink1-/- rat, a well-established early-onset genetic rat model of PD to assay swallowing and GI motility deficits. Thirty male rats were tested at 4 months (Pink1-/- = 15, wildtype (WT) control = 15) and 6 months (Pink1-/- = 7, WT = 6) of age; analogous to early-stage PD in humans. Videofluoroscopy of rats ingesting a peanut-butter-barium mixture was used to measure mastication rate and oropharyngeal and pharyngoesophageal bolus speeds. Abnormal swallowing behaviors were also quantified. A second experiment tracked barium contents through the stomach, small intestine, caecum, and colon at hours 0-6 post-barium gavage. Number and weight of fecal emissions over 24 h were also collected. Compared to WTs, Pink1-/- rats showed slower mastication rates, slower pharyngoesophageal bolus speeds, and more abnormal swallowing behaviors. Pink1-/- rats demonstrated significantly delayed motility through the caecum and colon. Pink1-/- rats also had significantly lower fecal pellet count and higher fecal pellet weight after 24 h at 6 months of age. Results demonstrate that swallowing dysfunction occurs early in Pink1-/- rats. Delayed transit to the colon and constipation-like signs are also evident in this model. The presence of these early swallowing and GI deficits in Pink1-/- rats are analogous to those observed in human PD.


Subject(s)
Deglutition Disorders , Parkinson Disease , Rats , Humans , Male , Animals , Parkinson Disease/complications , Deglutition , Barium , Deglutition Disorders/etiology , Constipation/complications
4.
Dysphagia ; 38(3): 785-817, 2023 06.
Article in English | MEDLINE | ID: mdl-36266521

ABSTRACT

Foods and liquids have properties that are often modified as part of clinical dysphagia management to promote safe and efficient swallowing. However, recent studies have questioned whether this practice is supported by the evidence. To address this, a scoping review was conducted to answer the question: "Can properties of food and liquids modify swallowing physiology and function in adults?" Online search in six databases yielded a set of 4235 non-duplicate articles. Using COVIDENCE software, two independent reviewers screened the articles by title and abstract, and 229 full-text articles were selected for full-text review. One-hundred eleven studies met the inclusion criteria for qualitative synthesis and assessment of risk of bias. Three randomized controlled trials and 108 non-randomized studies were analyzed. Large amounts of variability in instrumental assessment, properties of food and liquids, and swallowing measures were found across studies. Sour, sweet, and salty taste, odor, carbonation, capsaicin, viscosity, hardness, adhesiveness, and cohesiveness were reported to modify the oral and pharyngeal phase of swallowing in both healthy participants and patients with dysphagia. Main swallow measures modified by properties of food and liquids were penetration/aspiration, oral transit time, lingual pressures, submental muscle contraction, oral and pharyngeal residue, hyoid and laryngeal movement, pharyngeal and upper esophageal sphincter pressures, and total swallow duration. The evidence pooled in this review supports the clinical practice of food texture and liquid consistency modification in the management of dysphagia with the caveat that all clinical endeavors must be undertaken with a clear rationale and patient-specific evidence that modifying food or liquid benefits swallow safety and efficiency while maintaining quality of life.


Subject(s)
Deglutition Disorders , Deglutition , Humans , Adult , Deglutition/physiology , Quality of Life , Food , Pharynx
5.
Behav Brain Res ; 437: 114157, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36241070

ABSTRACT

Vocal communication, cognition, and affective state are key features of sustained health and wellness, and because vocalizations are often socially-motivated, social experience likely plays a role in these behaviors. The monoaminergic systems of the ventral tegmental area (VTA) and the locus coeruleus (LC) are associated with social and reward processing, vocalization production, and neurotransmitter changes in response to environmental stressors. The effect of social isolation on these complex behaviors and the underlying neural mechanisms is relatively unknown. To add to this body of literature, we randomized adult male Long-Evans rats to control (housed with a cagemate) or isolated (housed individually) conditions and assayed ultrasonic vocalizations, cognition (novel object recognition test), anxiety (elevated plus maze) and anhedonia (sucrose preference test) at 2, 4, 6, 8, and 10 months of age. At 10 months, VTA and LC samples were assayed for dopamine, norepinephrine, and serotonin using high performance liquid chromatography. We tested the hypotheses that isolation 1) diminishes vocalizations and cognition, 2) increases anxiety and depression, and 3) increases levels of dopamine, norepinephrine, and serotonin in the VTA and LC. Results showed isolation significantly reduced vocalization tonality (signal-to-noise ratio) and increased maximum frequency. There were no significant findings for cognition, anxiety, or anhedonia. Dopamine and serotonin and their respective metabolites were significantly increased in the VTA in isolated rats. These findings suggest chronic changes to social condition such as isolation affects vocalization production and levels of VTA neurotransmitters.


Subject(s)
Locus Coeruleus , Ultrasonics , Animals , Male , Rats , Anhedonia , Cognition , Dopamine/metabolism , Neurotransmitter Agents/metabolism , Norepinephrine/metabolism , Rats, Long-Evans , Serotonin/metabolism , Social Isolation , Ventral Tegmental Area , Vocalization, Animal/physiology
6.
Behav Brain Res ; 439: 114252, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36496078

ABSTRACT

Stroke frequently results in communication impairments that negatively impact quality of life and overall recovery, yet the biological mechanisms underlying these changes are not well understood. Ultrasonic vocalizations (USVs) in rodent models of disease and aging have been used to improve our understanding of the biological mechanisms that underlie vocal deficits and their response to interventions. Changes in USVs after middle cerebral artery occlusion (MCAO) in mice have been reported, yet rat models have significant anatomical and behavioral advantages over mice, including the ability to vocally train rats with an established paradigm. We sought to determine whether a unilateral MCAO rat stroke model provides a biologically and behaviorally relevant way to study post stroke vocalization deficits. We hypothesized that left MCAO would be associated with changes in USVs. Six weeks after MCAO or sham-control surgery, USVs were recorded in rats using an established mating paradigm. Stroke was associated with differences in USV acoustics including more frequent use of simple calls characterized by shorter durations and restricted bandwidths. These parameters were also found to correlate with post stroke lingual weakness. This is the first study to describe changes to rat USVs using a stroke model. These results suggest the unilateral MCAO rat stroke model is a biologically and behaviorally relevant model to understand how stroke affects vocal behaviors.


Subject(s)
Stroke , Ultrasonics , Rats , Animals , Mice , Vocalization, Animal/physiology , Quality of Life , Stroke/complications , Infarction, Middle Cerebral Artery/complications
7.
Front Behav Neurosci ; 17: 1294648, 2023.
Article in English | MEDLINE | ID: mdl-38322496

ABSTRACT

Background: Alzheimer's disease (AD) is a progressive neurologic disease and the most common cause of dementia. Classic pathology in AD is characterized by inflammation, abnormal presence of tau protein, and aggregation of ß-amyloid that disrupt normal neuronal function and lead to cell death. Deficits in communication also occur during disease progression and significantly reduce health, well-being, and quality of life. Because clinical diagnosis occurs in the mid-stage of the disease, characterizing the prodrome and early stages in humans is currently challenging. To overcome these challenges, we use the validated TgF344-AD (F344-Tg(Prp-APP, Prp-PS1)19/Rrrc) transgenic rat model that manifests cognitive, behavioral, and neuropathological dysfunction akin to AD in humans. Objectives: The overarching goal of our work is to test the central hypothesis that pathology and related behavioral deficits such as communication dysfunction in part manifest in the peripheral nervous system and corresponding target tissues already in the early stages. The primary aims of this study are to test the hypotheses that: (1) changes in ultrasonic vocalizations (USV) occur in the prodromal stage at 6 months of age and worsen at 9 months of age, (2) inflammation as well as AD-related pathology can be found in the thyroarytenoid muscle (TA) at 12 months of age (experimental endpoint tissue harvest), and to (3) demonstrate that the TgF344-AD rat model is an appropriate model for preclinical investigations of early AD-related vocal deficits. Methods: USVs were collected from male TgF344-AD (N = 19) and wildtype (WT) Fischer-344 rats (N = 19) at 6 months (N = 38; WT: n = 19; TgF344-AD: n = 19) and 9 months of age (N = 18; WT: n = 10; TgF344-AD: n = 8) and acoustically analyzed for duration, mean power, principal frequency, low frequency, high frequency, peak frequency, and call type. RT-qPCR was used to assay peripheral inflammation and AD-related pathology via gene expressions in the TA muscle of male TgF344-AD rats (n = 6) and WT rats (n = 6) at 12 months of age. Results: This study revealed a significant reduction in mean power of ultrasonic calls from 6 to 9 months of age and increased peak frequency levels over time in TgF344-AD rats compared to WT controls. Additionally, significant downregulation of AD-related genes Uqcrc2, Bace2, Serpina3n, and Igf2, as well as downregulation of pro-inflammatory gene Myd88 was found in the TA muscle of TgF344-AD rats at 12 months of age. Discussion: Our findings demonstrate early and progressive vocal deficits in the TgF344-AD rat model. We further provide evidence of dysregulation of AD-pathology-related genes as well as inflammatory genes in the TA muscles of TgF344-AD rats in the early stage of the disease, confirming this rat model for early-stage investigations of voice deficits and related pathology.

8.
J Voice ; 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36031506

ABSTRACT

OBJECTIVES/HYPOTHESIS: The objective of this study was to determine whether vocal tract semi-occlusion (SOVT) influenced stress effects on pharyngeal air pressure and upper esophageal sphincter (UES) pressure during phonation. Relationships between dysphonia and stress are well recognized but poorly understood. Stress effects act globally on the body, and may be observed beyond intrinsic laryngeal muscles to include pharyngeal muscles and the UES, which contribute to voice modulation. Phonation with SOVT may provide resistance to stress effects on the vocal tract. We hypothesized that stress effects on pharyngeal air pressure and UES pressure would be measurable with a high-resolution, 360° pressure catheter, and that stress effects would be impacted differently by occlusal and non-occlusal phonatory tasks. METHODS: Ten healthy adults performed sustained vowel tasks (comfortable /a/, and loud /a/), and SOVT tasks (bilabial fricative and straw phonation). Each task was performed during a baseline condition, and during stress induced through a cold pressor task. Pharyngeal air pressure and UES pressure were measured via high-resolution manometry. Changes in pressure between baseline and stress were compared among phonatory tasks. RESULTS: Stress-induced changes to UES pressure differed by phonatory task (P < 0.01). Stress increased UES pressures during vowels, but had no effect during bilabial fricative, and decreased UES pressures during straw phonation. Change in UES pressure with stress was greater for comfortable /a/ and loud /a/ than straw phonation (P = 0.048 and P = 0.019, respectively), and was not significantly different between comfortable /a/ or loud /a/ and bilabial fricative. Stress-induced changes in pharyngeal air pressure were not significantly different among tasks. CONCLUSIONS: These findings help identify possible mechanisms underlying the relationship between stress and voice, and point to the utility of SOVT tasks for training vocal tract resistance to stress. This methodology provides a foundation for measuring changes to extra-laryngeal components of the vocal tract during phonation.

9.
Brain Res Bull ; 185: 49-55, 2022 07.
Article in English | MEDLINE | ID: mdl-35469932

ABSTRACT

Communication and swallowing are highly complex sensorimotor events that are tightly linked to respiration and vital to health and well-being. The tongue is a complex organ, often described as a muscular hydrostat, that is crucial for maintaining airway patency, preparing and safely transporting food/liquid, and rapidly changing position and shape for speech. As with any complex behavior, tongue function can be compromised with aging, diseases/conditions, trauma, or as a pharmacologic side effect. As such, modeling lingual function and dysfunction for basic and translational research is paramount; understanding how the nervous system controls tongue function for complex behavior is foundational to this work. Non-invasive access to tongue tissues and kinematics during awake behavior has been historically challenging, creating a critical need to measure tongue function in model systems. Germane to this field of study are the instruments and assays of licking/lapping and drinking, including tongue force and timing measures, many of which were designed or modified by Dr. Stephen C. Fowler. The focus of this paper is to review some of the important contributions of measuring tongue behaviors in awake rats and mice and how these have been modified by other researchers to advance translational science.


Subject(s)
Deglutition , Tongue , Animals , Behavior, Animal , Biomechanical Phenomena , Disease Models, Animal , Mice , Rats , Tongue/physiology
10.
Behav Brain Res ; 418: 113642, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34755639

ABSTRACT

Vocal deficits and anxiety are common, co-occurring, and interacting signs of Parkinson Disease (PD) that have a devastating impact on quality of life. Both manifest early in the disease process. Unlike hallmark motor signs of PD, neither respond adequately to dopamine replacement therapies, suggesting that their disease-specific mechanisms are at least partially extra-dopaminergic. Because noradrenergic dysfunction is also a defining feature of PD, especially early in the disease progression, drug therapies targeting norepinephrine are being trialed for treatment of motor and non-motor impairments in PD. Research assessing the effects of noradrenergic manipulation on anxiety and vocal impairment in PD, however, is sparse. In this pre-clinical study, we quantified the influence of pharmacologic manipulation of norepinephrine on vocal impairment and anxiety in Pink1-/- rats, a translational model of PD that demonstrates both vocal deficits and anxiety. Ultrasonic vocalization acoustics, anxiety behavior, and limb motor activity were tested twice for each rat: after injection of saline and after one of three drugs. We hypothesized that norepinephrine reuptake inhibitors (atomoxetine and reboxetine) and a ß receptor antagonist (propranolol) would decrease vocal impairment and anxiety compared to saline, without affecting spontaneous motor activity. Our results demonstrated that atomoxetine and reboxetine decreased anxiety behavior. Atomoxetine also modulated ultrasonic vocalization acoustics, including an increase in vocal intensity, which is almost always reduced in animal models and patients with PD. Propranolol did not affect anxiety or vocalization. Drug condition did not influence spontaneous motor activity. These studies demonstrate relationships among vocal impairment, anxiety, and noradrenergic systems in the Pink1-/- rat model of PD.


Subject(s)
Anxiety , Norepinephrine/pharmacology , Parkinson Disease/physiopathology , Vocalization, Animal/drug effects , Adrenergic Uptake Inhibitors/pharmacology , Animals , Atomoxetine Hydrochloride/pharmacology , Disease Models, Animal , Humans , Male , Protein Kinases/genetics , Rats , Rats, Long-Evans , Reboxetine/pharmacology
11.
Behav Brain Res ; 414: 113514, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34358571

ABSTRACT

Vocal communication impairment and anxiety are co-occurring and interacting signs of Parkinson Disease (PD) that are common, poorly understood, and under-treated. Both vocal communication and anxiety are influenced by the noradrenergic system. In light of this shared neural substrate and considering that noradrenergic dysfunction is a defining characteristic of PD, tandem investigation of vocal impairment and anxiety in PD relative to noradrenergic mechanisms is likely to yield insights into the underlying disease-specific causes of these impairments. In order to address this gap in knowledge, we assessed vocal impairment and anxiety behavior relative to brainstem noradrenergic markers in a genetic rat model of early-onset PD (Pink1-/-) and wild type controls (WT). We hypothesized that 1) brainstem noradrenergic markers would be disrupted in Pink1-/-, and 2) brainstem noradrenergic markers would be associated with vocal acoustic changes and anxiety level. Rats underwent testing of ultrasonic vocalization and anxiety (elevated plus maze) at 4, 8, and 12 months of age. At 12 months, brainstem norepinephrine markers were quantified with immunohistochemistry. Results demonstrated that vocal impairment and anxiety were increased in Pink1-/- rats, and increased anxiety was associated with greater vocal deficit in this model of PD. Further, brainstem noradrenergic markers including TH and α1 adrenoreceptor immunoreactivity in the locus coeruleus, and ß1 adrenoreceptor immunoreactivity in vagal nuclei differed by genotype, and were associated with vocalization and anxiety behavior. These findings demonstrate statistically significant relationships among vocal impairment, anxiety, and brainstem norepinephrine in the Pink1-/- rat model of PD.


Subject(s)
Anxiety , Brain Stem/metabolism , Norepinephrine/metabolism , Parkinson Disease , Speech Disorders , Vocalization, Animal/physiology , Animals , Anxiety/etiology , Anxiety/metabolism , Anxiety/physiopathology , Disease Models, Animal , Male , Parkinson Disease/complications , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Rats , Rats, Transgenic , Speech Disorders/etiology , Speech Disorders/metabolism , Speech Disorders/physiopathology
12.
Brain Sci ; 11(7)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34356159

ABSTRACT

Parkinson's disease (PD) is a progressive, degenerative disorder that affects 10 million people worldwide. More than 90% of individuals with PD develop hypokinetic dysarthria, a motor speech disorder that impairs vocal communication and quality of life. Despite the prevalence of vocal deficits in this population, very little is known about the pathological mechanisms underlying this aspect of disease. As such, effective treatment options are limited. Rat models have provided unique insights into the disease-specific mechanisms of vocal deficits in PD. This review summarizes recent studies investigating vocal deficits in 6-hydroxydopamine (6-OHDA), alpha-synuclein overexpression, DJ1-/-, and Pink1-/- rat models of PD. Model-specific changes to rat ultrasonic vocalization (USV), and the effects of exercise and pharmacologic interventions on USV production in these models are discussed.

13.
J Speech Lang Hear Res ; 64(9): 3456-3464, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34319775

ABSTRACT

Purpose The study of air pressure in the vocal tract is essential to understanding vocal function. Changes in vocal tract shape during different phonatory gestures are hypothesized to produce nonuniform air pressure across lower vocal tract locations. Current methods of air pressure measurement, however, are limited to a single location in the anterior oral cavity. The purposes of this study were (a) to assess the feasibility of a novel method of simultaneously measuring phonatory air pressure at multiple locations across the lower vocal tract using high-resolution pharyngeal manometry (HRM) and (b) to compare pressure across locations and among phonatory tasks. Method Two subjects underwent HRM while performing phonatory tasks. A catheter was passed transnasally and air pressure was measured simultaneously at five locations between the velopharyngeal port and the upper esophageal sphincter. Descriptive statistics were calculated for each location by task, and for each task averaged across locations. Results HRM was well tolerated, and air pressures from multiple locations in the lower vocal tract were able to be obtained simultaneously. During vocal tract semi-occlusion tasks, air pressures differed by location. Pressures averaged across locations demonstrated a pattern of increasing pressure with increasing semi-occlusion. Conclusions HRM is feasible for measuring air pressure simultaneously at multiple locations in the lower vocal tract during phonation with high spatial and temporal resolution, providing rich data to augment understanding of vocal function. The high spatial and temporal resolution yielded by this new method, paired with preliminary evidence that pressures change by location as a function of phonatory task, may be useful in future assays exploring differences in lower vocal tract air pressures between normal and disordered populations.


Subject(s)
Esophageal Sphincter, Upper , Phonation , Air Pressure , Humans , Manometry , Mouth
15.
Brain Sci ; 11(4)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916537

ABSTRACT

The rat model is a useful tool for understanding peripheral and central mechanisms of laryngeal biology. Rats produce ultrasonic vocalizations (USVs) that have communicative intent and are altered by experimental conditions such as social environment, stress, diet, drugs, age, and neurological diseases, validating the rat model's utility for studying communication and related deficits. Sex differences are apparent in both the rat larynx and USV acoustics and are differentially affected by experimental conditions. Therefore, the purpose of this review paper is to highlight the known sex differences in rat USV production, acoustics, and laryngeal biology detailed in the literature across the lifespan.

16.
Laryngoscope ; 131(1): E52-E58, 2021 01.
Article in English | MEDLINE | ID: mdl-32304341

ABSTRACT

OBJECTIVES: Within-individual movement variability occurs in most motor domains. However, it is unknown how pharyngeal swallowing pressure varies in healthy individuals. We hypothesized that: 1) variability would differ among pharyngeal regions; 2) variability would decrease with increased bolus volume; 3) variability would increase with age; and 4) there would be no sex differences. STUDY DESIGN: Case series. METHODS: We used pharyngeal high-resolution manometry to measure swallowing pressure in the following regions: velopharynx, tongue base, hypopharynx, and upper esophageal sphincter. Data were collected from 97 healthy adults (41 male) aged 21 to 89 years during thin liquid swallows: 2 mL, 10 mL, and participant-selected comfortable volume. Pressure variability was measured using coefficient of variation. Repeated measures analysis of variance was used to assess impacts of region, bolus volume, age, and sex on pressure variability. RESULTS: There was a significant region × volume interaction (P < .001) and significant main effect of age (P = .005). Pressures in the hypopharynx region were more variable than all other regions (P ≤ .028), and pressures in the tongue base region were less variable than all other regions (P ≤ .002) except at 2 mL volumes (P = .065). Swallowing pressure variability was significantly different in the velopharynx and upper esophageal sphincter regions, with comfortable volume and 2 mL swallows having greater variability than 10 mL swallows (P ≤ .026). Pressure variability significantly increased with increasing age (P = .002). There were no effects of sex on pressure variability (P ≥ .15). CONCLUSION: Pharyngeal swallowing pressure variability differs according pharyngeal region, volume, and age but not sex. Abnormal swallowing pressure variability may reflect deviations in motor control in persons with swallowing impairment, and results from this study can be used as normative data for future investigations evaluating swallowing pressure generation. LEVEL OF EVIDENCE: 4 Laryngoscope, 131:E52-E58, 2021.


Subject(s)
Deglutition/physiology , Pharynx/physiology , Adult , Age Factors , Aged , Aged, 80 and over , Female , Food , Humans , Male , Middle Aged , Pressure , Sex Factors , Young Adult
17.
PLoS One ; 15(10): e0240366, 2020.
Article in English | MEDLINE | ID: mdl-33064741

ABSTRACT

Parkinson disease (PD) is associated with speech and swallowing difficulties likely due to pathology in widespread brain and nervous system regions. In post-mortem studies of PD, pathology has been reported in pharyngeal and laryngeal nerves and muscles. However, it is unknown whether PD is associated with neuromuscular changes in the tongue. Prior work in a rat model of PD (Pink1-/-) showed oromotor and swallowing deficits in the premanifest stage which suggested sensorimotor impairments of these functions. The present study tested the hypothesis that Pink1-/- rats show altered tongue function coinciding with neuromuscular differences within tongue muscles compared to wildtype (WT). Male Pink1-/- and WT rats underwent behavioral tongue function assays at 4 and 6 months of age (n = 7-8 rats per group), which are time points early in the disease. At 6 months, genioglossus (GG) and styloglossus (SG) muscles were analyzed for myosin heavy chain isoforms (MyHC), α-synuclein levels, myofiber size, centrally nucleated myofibers, and neuromuscular junction (NMJ) innervation. Pink1-/- showed greater tongue press force variability, and greater tongue press forces and rates as compared to WT. Additionally, Pink1-/- showed relative increases of MyHC 2a in SG, but typical MyHC profiles in GG. Western blots revealed Pink1-/- had more α-synuclein protein than WT in GG, but not in SG. There were no differences between Pink1-/- and WT in myofiber size, centrally-nucleated myofibers, or NMJ innervation. α-synuclein protein was observed in nerves, NMJ, and vessels in both genotypes. Findings at these early disease stages suggest small changes or no changes in several peripheral biological measures, and intact motor innervation of tongue muscles. Future work should evaluate these measures at later disease stages to determine when robust pathological peripheral change contributes to functional change, and what CNS deficits cause behavioral changes. Understanding how PD affects central and peripheral mechanisms will help determine therapy targets for speech and swallowing disorders.


Subject(s)
Palatal Muscles/physiopathology , Parkinson Disease/genetics , Protein Kinases/genetics , Animals , Disease Models, Animal , Gene Knockout Techniques , Male , Myosin Heavy Chains/metabolism , Palatal Muscles/metabolism , Parkinson Disease/physiopathology , Rats , Tongue/metabolism , Tongue/physiopathology
18.
J Parkinsons Dis ; 10(2): 489-504, 2020.
Article in English | MEDLINE | ID: mdl-32065805

ABSTRACT

BACKGROUND: Individuals with Parkinson's disease (PD) experience significant vocal communication deficits. Findings in the Pink1-/- rat model of early-onset PD suggest that ultrasonic vocal communication is impaired early, progressively worsens prior to nigrostriatal dopamine depletion, and is associated with loss of locus coeruleus neurons, brainstem α-synuclein, and larynx pathology. Individuals with PD also demonstrate ventilatory deficits and altered sensory processing, which may contribute to vocal deficits. OBJECTIVE: The central hypothesis is that ventilatory and sensory deficits are present in the early disease stages when limb and vocal motor deficits also present. METHODS: Pink1-/- rats were compared to wildtype (WT) controls at longitudinal timepoints. Whole-body flow through plethysmography was used to measure ventilation in the following conditions: baseline, hypoxia, and maximal chemoreceptor stimulation. Plantar thermal nociception, and as a follow up to previous work, limb gait and vocalization were analyzed. Serotonin density (5-HT) in the dorsal raphe was quantified post-mortem. RESULTS: Baseline breathing frequencies were consistently higher in Pink1-/- rats at all time points. In hypoxic conditions, there were no significant changes between genotypes. With hypercapnia, Pink1-/- rats had decreased breathing frequencies with age. Thermal withdrawal latencies were significantly faster in Pink1-/- compared with WT rats across time. No differences in 5-HT were found between genotypes. Vocal peak frequency was negatively correlated to tidal volume and minute ventilation in Pink1-/- rats. CONCLUSION: This work suggests that abnormal nociceptive responses in Pink1-/- rats and ventilatory abnormalities may be associated with abnormal sensorimotor processing to chemosensory stimuli during disease manifestation.


Subject(s)
Nociception/physiology , Parkinson Disease/physiopathology , Perceptual Disorders/physiopathology , Protein Kinases , Respiration Disorders/physiopathology , Thermosensing/physiology , Vocalization, Animal/physiology , Animals , Disease Models, Animal , Parkinson Disease/complications , Perceptual Disorders/etiology , Rats , Respiration Disorders/etiology
19.
Dysphagia ; 35(2): 281-295, 2020 04.
Article in English | MEDLINE | ID: mdl-31168756

ABSTRACT

High-resolution manometry has traditionally been utilized in gastroenterology diagnostic clinical and research applications. Recently, it is also finding new and important applications in speech pathology and laryngology practices. A High-Resolution Pharyngeal Manometry International Working Group was formed as a grass roots effort to establish a consensus on methodology, protocol, and outcome metrics for high-resolution pharyngeal manometry (HRPM) with consideration of impedance as an adjunct modality. The Working Group undertook three tasks (1) survey what experts were currently doing in their clinical and/or research practice; (2) perform a review of the literature underpinning the value of particular HRPM metrics for understanding swallowing physiology and pathophysiology; and (3) establish a core outcomes set of HRPM metrics via a Delphi consensus process. Expert survey results were used to create a recommended HRPM protocol addressing system configuration, catheter insertion, and bolus administration. Ninety two articles were included in the final literature review resulting in categorization of 22 HRPM-impedance metrics into three classes: pharyngeal lumen occlusive pressures, hypopharyngeal intrabolus pressures, and upper esophageal sphincter (UES) function. A stable Delphi consensus was achieved for 8 HRPM-Impedance metrics: pharyngeal contractile integral (CI), velopharyngeal CI, hypopharyngeal CI, hypopharyngeal pressure at nadir impedance, UES integrated relaxation pressure, relaxation time, and maximum admittance. While some important unanswered questions remain, our work represents the first step in standardization of high-resolution pharyngeal manometry acquisition, measurement, and reporting. This could potentially inform future proposals for an HRPM-based classification system specifically for pharyngeal swallowing disorders.


Subject(s)
Electric Impedance , Manometry/standards , Otolaryngology/standards , Pharynx/diagnostic imaging , Speech-Language Pathology/standards , Benchmarking , Consensus , Delphi Technique , Humans , Manometry/methods , Otolaryngology/methods , Reference Standards , Speech-Language Pathology/methods
20.
J Comp Neurol ; 528(4): 574-596, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31512255

ABSTRACT

The recurrent laryngeal nerve (RLN) is responsible for normal vocal-fold (VF) movement, and is at risk for iatrogenic injury during anterior neck surgical procedures in human patients. Injury, resulting in VF paralysis, may contribute to subsequent swallowing, voice, and respiratory dysfunction. Unfortunately, treatment for RLN injury does little to restore physiologic function of the VFs. Thus, we sought to create a mouse model with translational functional outcomes to further investigate RLN regeneration and potential therapeutic interventions. To do so, we performed ventral neck surgery in 21 C57BL/6J male mice, divided into two groups: Unilateral RLN Transection (n = 11) and Sham Injury (n = 10). Mice underwent behavioral assays to determine upper airway function at multiple time points prior to and following surgery. Transoral endoscopy, videofluoroscopy, ultrasonic vocalizations, and whole-body plethysmography were used to assess VF motion, swallow function, vocal function, and respiratory function, respectively. Affected outcome metrics, such as VF motion correlation, intervocalization interval, and peak inspiratory flow were identified to increase the translational potential of this model. Additionally, immunohistochemistry was used to investigate neuronal cell death in the nucleus ambiguus. Results revealed that RLN transection created ipsilateral VF paralysis that did not recover by 13 weeks postsurgery. Furthermore, there was evidence of significant vocal and respiratory dysfunction in the RLN transection group, but not the sham injury group. No significant differences in swallow function or neuronal cell death were found between the two groups. In conclusion, our mouse model of RLN injury provides several novel functional outcome measures to increase the translational potential of findings in preclinical animal studies. We will use this model and behavioral assays to assess various treatment options in future studies.


Subject(s)
Deglutition/physiology , Recurrent Laryngeal Nerve Injuries/physiopathology , Vocal Cord Paralysis/physiopathology , Vocal Cords/physiology , Vocalization, Animal/physiology , Animals , Brain Stem/chemistry , Brain Stem/physiology , Laryngoscopy/methods , Male , Mice , Mice, Inbred C57BL , Recurrent Laryngeal Nerve/chemistry , Recurrent Laryngeal Nerve/physiology , Recurrent Laryngeal Nerve Injuries/complications , Vocal Cord Paralysis/etiology , Vocal Cords/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...