Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 21504, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513775

ABSTRACT

In patients with subacute stroke, task specific training (TST) has been shown to accelerate functional recovery of the upper limb. However, many patients do not have sufficient active extension of the fingers to perform this treatment. In these patients, here we propose a new rehabilitation technique in which TST is performed through a soft robotic hand (SoftHand-X). In short, the extension of the robotic fingers is controlled by the patient through his residual, albeit minimal, active extension of the fingers or wrist, while the patient was required to relax the muscles to achieve full flexion of the robotic fingers. TST with SoftHand-X was attempted in 27 subacute stroke patients unable to perform TST due to insufficient active extension of the fingers. Four patients (14.8%) were able to perform the proposed treatment (10 daily sessions of 60 min each). They reported an excellent level of participation. After the treatment, both clinical score of spasticity and its electromyographic correlate (stretch reflex) decreased. In subacute stroke patients, TST using SoftHand-X is a well-accepted treatment, resulting in a decrease of spasticity. At present, it can be applied only in a small proportion of the patients who cannot perform conventional TST, though extensions are possible.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Stroke Rehabilitation/methods , Pilot Projects , Upper Extremity , Hand , Muscle Spasticity , Treatment Outcome
2.
Front Robot AI ; 8: 650613, 2021.
Article in English | MEDLINE | ID: mdl-34490355

ABSTRACT

The most common causes of the risk of work-related musculoskeletal disorders (WMSD) have been identified as joint overloading, bad postures, and vibrations. In the last two decades, various solutions ranging from human-robot collaborative systems to robotic exoskeletons have been proposed to mitigate them. More recently, a new approach has been proposed with a high potential in this direction: the supernumerary robotic limbs SRLs are additional robotic body parts (e.g., fingers, legs, and arms) that can be worn by the workers, augmenting their natural ability and reducing the risks of injuries. These systems are generally proposed in the literature for their potentiality of augmenting the user's ability, but here we would like to explore this kind of technology as a new generation of (personal) protective equipment. A supernumerary robotic upper limb, for example, allows for indirectly interacting with hazardous objects like chemical products or vibrating tools. In particular, in this work, we present a supernumerary robotic limbs system to reduce the vibration transmitted along the arms and minimize the load on the upper limb joints. For this purpose, an off-the-shelf wearable gravity compensation system is integrated with a soft robotic hand and a custom damping wrist, designed starting from theoretical considerations on a mass-spring-damper model. The real efficacy of the system was experimentally tested within a simulated industrial work environment, where seven subjects performed a drilling task on two different materials. Experimental analysis was conducted according to the ISO-5349. Results showed a reduction from 40 to 60% of vibration transmission with respect to the traditional hand drilling using the presented SRL system without compromising the time performance.

3.
IEEE Trans Neural Syst Rehabil Eng ; 28(5): 1168-1177, 2020 05.
Article in English | MEDLINE | ID: mdl-32248115

ABSTRACT

Upper limb functions are severely affected in 23% of the chronic stroke patients, compromising their life quality. To re-enable hand use, providing a degree of functionality and motivating against learned non-use, we propose a robotic supernumerary limb, the SoftHand X (SHX), consisting of a robotic hand, a gravity support system, and different sensors to detect the patient's intent for controlling the robotic hand. In this paper, this novel compensational approach is introduced and experimentally evaluated in stroke patients, assessing its efficacy, usability and safety. Ten patients were asked to perform tasks of a modified Action Research Arm Test with the SHX, by using three input methods. The mARAT scores rated the potentiality of the system. Usability was evaluated with the System Usability Scale, while spasticity before and after use was measured by the modified Ashworth Scale (mAS). Nine patients, not able to perform any tasks without external support, completed the whole experimental procedure using the proposed system with a median score greater than 12/30. Among the three input methods tested, the usability of one was rated as "good" while the other two were rated as "ok". Seven patients exhibited a reduction of the mAS. All nine patients stated that they would use the system frequently. Results obtained suggest that the SHX has the potential to partially compensate severely impaired hand function in stroke patients.


Subject(s)
Robotics , Stroke Rehabilitation , Stroke , Hand , Humans , Stroke/complications , Treatment Outcome
4.
Front Robot AI ; 7: 587759, 2020.
Article in English | MEDLINE | ID: mdl-33501345

ABSTRACT

Recently, extratheses, aka Supernumerary Robotic Limbs (SRLs), are emerging as a new trend in the field of assistive and rehabilitation devices. We proposed the SoftHand X, a system composed of an anthropomorphic soft hand extrathesis, with a gravity support boom and a control interface for the patient. In preliminary tests, the system exhibited a positive outlook toward assisting impaired people during daily life activities and fighting learned-non-use of the impaired arm. However, similar to many robot-aided therapies, the use of the system may induce side effects that can be detrimental and worsen patients' conditions. One of the most common is the onset of alternative grasping strategies and compensatory movements, which clinicians absolutely need to counter in physical therapy. Before embarking in systematic experimentation with the SoftHand X on patients, it is essential that the system is demonstrated not to lead to an increase of compensation habits. This paper provides a detailed description of the compensatory movements performed by healthy subjects using the SoftHand X. Eleven right-handed healthy subjects were involved within an experimental protocol in which kinematic data of the upper body and EMG signals of the arm were acquired. Each subject executed tasks with and without the robotic system, considering this last situation as reference of optimal behavior. A comparison between two different configurations of the robotic hand was performed to understand if this aspect may affect the compensatory movements. Results demonstrated that the use of the apparatus reduces the range of motion of the wrist, elbow and shoulder, while it increases the range of the trunk and head movements. On the other hand, EMG analysis indicated that muscle activation was very similar among all the conditions. Results obtained suggest that the system may be used as assistive device without causing an over-use of the arm joints, and opens the way to clinical trials with patients.

5.
Int J Med Robot ; 14(5): e1926, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29968295

ABSTRACT

BACKGROUND: 3D reconstruction algorithms are of fundamental importance for augmented reality applications in computer-assisted surgery. However, few datasets of endoscopic stereo images with associated 3D surface references are currently openly available, preventing the proper validation of such algorithms. This work presents a new and rich dataset of endoscopic stereo images (EndoAbS dataset). METHODS: The dataset includes (i) endoscopic stereo images of phantom abdominal organs, (ii) a 3D organ surface reference (RF) generated with a laser scanner and (iii) camera calibration parameters. A detailed description of the generation of the phantom and the camera-laser calibration method is also provided. RESULTS: An estimation of the overall error in creation of the dataset is reported (camera-laser calibration error 0.43 mm) and the performance of a 3D reconstruction algorithm is evaluated using EndoAbS, resulting in an accuracy error in accordance with state-of-the-art results (<2 mm). CONCLUSIONS: The EndoAbS dataset contributes to an increase the number and variety of openly available datasets of surgical stereo images, including a highly accurate RF and different surgical conditions.


Subject(s)
Abdomen/diagnostic imaging , Benchmarking , Datasets as Topic , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Surgery, Computer-Assisted/methods , Abdomen/surgery , Algorithms , Endoscopy , Humans , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...