Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vascul Pharmacol ; 152: 107212, 2023 10.
Article in English | MEDLINE | ID: mdl-37619798

ABSTRACT

Arterial stiffness is a hallmark of vascular ageing and results in increased blood flow pulsatility to the periphery, damaging end-organs such as the heart, kidneys and brain. Treating or "reversing" arterial stiffness has therefore become a central target in the field of vascular ageing. SGLT2 inhibitors, initially developed in the context of type 2 diabetes mellitus, have become a cornerstone of heart failure treatment. Additionally, effects on the vasculature have been reported. Here, we demonstrate that treatment with the SGLT2 inhibitor empagliflozin (7 weeks, 15 mg/kg/day) decreased ageing-induced arterial stiffness of the aorta in old mice with normal blood glucose levels. However, no universal mechanism was identified. While empagliflozin reduced the ageing-associated increase in collagen type I in the medial layer of the abdominal infrarenal aorta and decreased medial TGF-ß deposition, this was not observed in the thoracic descending aorta. Moreover, empagliflozin was not able to prevent elastin fragmentation. In conclusion, empagliflozin decreased arterial stiffness in aged mice, indicating that SGLT2 inhibition could be a valuable strategy in mitigating vascular ageing. Further research is warranted to unravel the underlying, possibly region-specific, mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Animals , Mice , Diabetes Mellitus, Type 2/drug therapy , Arteries , Heart , Aging , Aorta, Abdominal , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
2.
Pharmaceutics ; 14(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35214031

ABSTRACT

The purpose of this analytical study was to develop an advanced formulation of medical Cannabis oil (MCO) comparing the chemical profile of different extracts obtained with two existing methods (SIFAP and CALVI) and one original upgraded (CERFIT) method. Preparation methods were applied with varying solvent, temperature, and duration of the decarboxylation and extraction steps. HPLC-MS/MS TSQ and GC/FID-HS analyses were performed to investigate cannabinoid and terpene contents in the three oil extracts. Cannabinoids profile remained comparable between the formulations. CERFIT extracts exhibited a superior quantity of total terpene hydrocarbon forms (e.g., limonene and α-pinene) with no degradation occurrence (i.e., oxidized terpenes not quantifiable). Thus, this new method optimized the phytochemical profile of the MCO presenting a value opportunity to obtain a standardized high-level therapeutic product.

SELECTION OF CITATIONS
SEARCH DETAIL
...