Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cryst Growth Des ; 21(6): 3449-3460, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34267600

ABSTRACT

Needle crystals can cause filtering and handling problems in industrial settings, and the factors leading to a needle crystal morphology have been investigated. The crystal growth of the amide and methyl, ethyl, isopropyl, and t-butyl esters of diflunisal have been examined, and needle growth has been observed for all except the t-butyl ester. Their crystal structures show that the t-butyl ester is the only structure that does not contain molecular stacking. A second polymorph of a persistent needle forming phenylsulfonamide with a block like habit has been isolated. The structure analysis has been extended to known needle forming systems from the literature. The intermolecular interactions in needle forming structures have been analyzed using the PIXEL program, and the properties driving needle crystal growth were found to include a 1D motif with interaction energy greater than -30 kJ/mol, at least 50% vdW contact between the motif neighbors, and a filled unit cell which is a monolayer. Crystal structures are classified into persistent and controllable needle formers. Needle growth in the latter class can be controlled by choice of solvent. The factors shown here to be drivers of needle growth will help in the design of processes for the production of less problematic crystal products.

2.
Int J Pharm ; 528(1-2): 312-321, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28603011

ABSTRACT

Understanding phase transitions in pharmaceutical materials is of vital importance for drug manufacturing, processing and storage. In this paper we have carried out comprehensive high-resolution spectroscopic studies on the polymorphs of the non-steroidal anti-inflammatory drug diflunisal that has four known polymorphs, forms I-IV (FI-FIV), three of which have known crystal structures. Phase transformations during milling, heating, melt-quenching and exposure to high relative humidity were investigated using Raman and terahertz spectroscopy in combination with differential scanning calorimetry and X-ray powder diffraction. The observed phase transformations indicate the stability order FIII>FI>FII, FIV. Furthermore, crystallization experiments from the gas phase and from solution by fast evaporation of different solvents were carried out. Fast evaporation of an ethanolic solution below 70°C was identified as a reliable and convenient method to obtain the somewhat elusive FII in bulk quantities.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/analysis , Diflunisal/analysis , Calorimetry, Differential Scanning , Crystallization , Spectrum Analysis, Raman , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...