Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosurg Focus ; 56(1): E9, 2024 01.
Article in English | MEDLINE | ID: mdl-38163349

ABSTRACT

OBJECTIVE: In the era of flow diversion, there is an increasing demand to train neurosurgeons outside the operating room in safely performing clipping of unruptured intracranial aneurysms. This study introduces a clip training simulation platform for residents and aspiring cerebrovascular neurosurgeons, with the aim to visualize peri-aneurysm anatomy and train virtual clipping applications on the matching physical aneurysm cases. METHODS: Novel, cost-efficient techniques allow the fabrication of realistic aneurysm phantom models and the additional integration of holographic augmented reality (AR) simulations. Specialists preselected suitable and unsuitable clips for each of the 5 patient-specific models, which were then used in a standardized protocol involving 9 resident participants. Participants underwent four sessions of clip applications on the models, receiving no interim training (control), a video review session (video), or a video review session and holographic clip simulation training (video + AR) between sessions 2 and 3. The study evaluated objective microsurgical skills, which included clip selection, number of clip applications, active simulation time, wrist tremor analysis during simulations, and occlusion efficacy. Aneurysm occlusions of the reference sessions were assessed by indocyanine green videoangiography, as well as conventional and photon-counting CT scans. RESULTS: A total of 180 clipping procedures were performed without technical complications. The measurements of the active simulation times showed a 39% improvement for all participants. A median of 2 clip application attempts per case was required during the final session, with significant improvement observed in experienced residents (postgraduate year 5 or 6). Wrist tremor improved by 29% overall. The objectively assessed aneurysm occlusion rate (Raymond-Roy class 1) improved from 76% to 80% overall, even reaching 93% in the extensively trained cohort (video + AR) (p = 0.046). CONCLUSIONS: The authors introduce a newly developed simulator training platform combining physical and holographic aneurysm clipping simulators. The development of exchangeable, aneurysm-comprising housings allows objective radio-anatomical evaluation through conventional and photon-counting CT scans. Measurable performance metrics serve to objectively document improvements in microsurgical skills and surgical confidence. Moreover, the different training levels enable a training program tailored to the cerebrovascular trainees' levels of experience and needs.


Subject(s)
Intracranial Aneurysm , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/surgery , Neurosurgical Procedures/methods , Tremor/surgery , Microsurgery/methods , Computer Simulation
2.
Math Biosci Eng ; 18(4): 3993-4010, 2021 05 08.
Article in English | MEDLINE | ID: mdl-34198422

ABSTRACT

Acute Ischemic Stroke (AIS) is defined as the acute condition of occlusion of a cerebral artery and is often caused by a Hypertensive Condition (HC). Due to its sudden occurrence, AIS is not observable the right moment it occurs, thus information about instantaneous changes in hemodynamics is limited. This study aimed to propose an integrated Lumped Parameter (LP) model of the cardiovascular system to simulate an AIS and describe instantaneous changes in hemodynamics. In the integrated LP model of the cardiovascular system, heart chambers have been modelled with elastance systems with controlled pressure inputs; heart valves have been modelled with static open/closed pressure-controlled valves; eventually, the vasculature has been modelled with resistor-inductor-capacitor (RLC) direct circuits and have been linked to the rest of the system through a series connection. After simulating physiological conditions, HC has been simulated by changing pressure inputs and constant RLC parameters. Then, AIS occurring in arteries of different sizes have been simulated by considering time-dependent RLC parameters due to the elimination from the model of the occluding artery; instantaneous changes in hemodynamics have been evaluated by Systemic Arteriolar Flow (Qa) and Systemic Arteriolar Pressure (Pa) drop with respect to those measured in HC. Occlusion of arteries of different sizes leaded to an average Qa drop of 0.38 ml/s per cardiac cycle (with minimum and maximum values of 0.04 ml/s and 1.93 ml/s) and average Pa drop of 0.39 mmHg, (with minimum and maximum values of 0.04 mmHg and 1.98 mmHg). In conclusion, hemodynamic variations due to AIS are very small with respect to HC. A direct relation between the inverse of the length of the artery in which the occlusion occurs and the hemodynamic variations has been highlighted; this may allow to link the severity of AIS to the length of the interested artery.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Arteries , Computer Simulation , Hemodynamics , Humans , Models, Cardiovascular
SELECTION OF CITATIONS
SEARCH DETAIL
...