Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Infect Agent Cancer ; 17(1): 35, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35739602

ABSTRACT

The mouse mammary tumour virus (MMTV) is implicated in the aetiology of murine mammary carcinomas and a variant of it, the type B leukemogenic virus, can cause murine thymic lymphomas. Interestingly, a MMTV-like virus is suspected to be involved in human breast cancer and feline mammary carcinomas. However, to date, no cases of MMTV-like sequence amplifications have been described in lymphoid neoplasms in veterinary literature. The aim of this study was to investigate the presence of env nucleotide sequences and protein 14 (p14) of a MMTV-like virus in fifty-three feline lymphoma samples. Our results show that MMTV-like sequences were detected in 5/53 tumours (9.4%): three gastrointestinal lymphomas (one B-type diffuse large, one B-type small non-cleaved, and one T-type diffuse mixed lymphoma); and two nasal lymphomas (one B-type diffuse small cleaved lymphoma and one B-type diffuse mixed lymphoma). P14 expression was detected in the cytoplasm, and rarely in nuclei, exclusively of neoplastic cells from PCR-positive tumours. The correlation between the presence of the MMTV-env like sequences (MMTVels) and p14 antigen was statistically significant in nasal lymphomas. All cats with MMTVels-positive lymphoma had a history of contact with the outdoor environment and/or catteries, and two deceased subjects shared their environment with cats that also died of lymphoma. In conclusion, this study succeeds in demonstrating the presence of MMTVels and p14 in feline lymphomas. The characterization of the immunophenotype of MMTVels-positive lymphomas could contribute to the understanding of a possible role of a MMTV-like virus in feline tumour aetiology. The significant association between the presence of the viral sequences in lymphoid tumours and their nasal localization, together with the data collected through supplementary anamnesis, should be further analysed in order to understand the epidemiology of the virus.

2.
Animals (Basel) ; 11(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34679842

ABSTRACT

In the last few years MMTV-like nucleotide sequences were detected in some feline and canine mammary tumours. Due to the confirmed role of cats in the epidemiology of the MMTV-like virus, the aim of this study was to investigate the main pathological features of positive feline mammary carcinomas (FMCs). Twenty-four FMCs were collected at the University of Bologna, submitted to laser microdissection and analysed by nested fluorescence-PCR using primer sets specific for MMTV env sequence. For immunohistochemistry, an antibody against MMTV protein 14 (p14) was used. MMTV-like sequences were detected in three out of 24 FMCs (12.5%), one tubular carcinoma, one tubulopapillary carcinoma and one ductal carcinoma. All PCR-positive tumours were also positive for p14. Multiple nucleotide alignment has shown similarity to MMTV ranging from 98% to 100%. All the 102 examined FMCs were submitted to immunohistochemistry for molecular phenotyping. Of the nine MMTV-like positive FMCs, six were basal-like and three luminal-like. Our results demonstrate MMTV-like sequences and protein in FMCs of different geographic areas. Molecular phenotyping could contribute to understand the possible role of MMTV-like virus in FMC tumor biology.

3.
Front Oncol ; 11: 701933, 2021.
Article in English | MEDLINE | ID: mdl-34490102

ABSTRACT

Glioblastoma (GB) remains an aggressive malignancy with an extremely poor prognosis. Discovering new candidate drug targets for GB remains an unmet medical need. Caveolin-1 (Cav-1) has been shown to act variously as both a tumour suppressor and tumour promoter in many cancers. The implications of Cav-1 expression in GB remains poorly understood. Using clinical and genomic databases we examined the relationship between tumour Cav-1 gene expression (including its spatial distribution) and clinical pathological parameters of the GB tumour and survival probability in a TCGA cohort (n=155) and CGGA cohort (n=220) of GB patients. High expression of Cav-1 represented a significant independent predictor of shortened survival (HR = 2.985, 5.1 vs 14.9 months) with a greater statistically significant impact in female patients and in the Proneural and Mesenchymal GB subtypes. High Cav-1 expression correlated with other factors associated with poor prognosis: IDH w/t status, high histological tumour grade and low KPS score. A total of 4879 differentially expressed genes (DEGs) in the GB tumour were found to correlate with Cav-1 expression (either positively or negatively). Pathway enrichment analysis highlighted an over-representation of these DEGs to certain biological pathways. Focusing on those that lie within a framework of epithelial to mesenchymal transition and tumour cell migration and invasion we identified 27 of these DEGs. We then examined the prognostic value of Cav-1 when used in combination with any of these 27 genes and identified a subset of combinations (with Cav-1) indicative of co-operative synergistic mechanisms of action. Overall, the work has confirmed Cav-1 can serve as an independent prognostic marker in GB, but also augment prognosis when used in combination with a panel of biomarkers or clinicopathologic parameters. Moreover, Cav-1 appears to be linked to many signalling entities within the GB tumour and as such this work begins to substantiate Cav-1 or its associated signalling partners as candidate target for GB new drug discovery.

4.
Altern Lab Anim ; 49(3): 93-110, 2021 May.
Article in English | MEDLINE | ID: mdl-34225465

ABSTRACT

Experimental systems that faithfully replicate human physiology at cellular, tissue and organ level are crucial to the development of efficacious and safe therapies with high success rates and low cost. The development of such systems is challenging and requires skills, expertise and inputs from a diverse range of experts, such as biologists, physicists, engineers, clinicians and regulatory bodies. Kirkstall Limited, a biotechnology company based in York, UK, organised the annual conference, Advances in Cell and Tissue Culture (ACTC), which brought together people having a variety of expertise and interests, to present and discuss the latest developments in the field of cell and tissue culture and in vitro modelling. The conference has also been influential in engaging animal welfare organisations in the promotion of research, collaborative projects and funding opportunities. This report describes the proceedings of the latest ACTC conference, which was held virtually on 30th September and 1st October 2020, and included sessions on in vitro models in the following areas: advanced skin and respiratory models, neurological disease, cancer research, advanced models including 3-D, fluid flow and co-cultures, diabetes and other age-related disorders, and animal-free research. The roundtable session on the second day was very interactive and drew huge interest, with intriguing discussion taking place among all participants on the theme of replacement of animal models of disease.


Subject(s)
Lab-On-A-Chip Devices , Skin , Animals , Coculture Techniques , Humans , Models, Animal
5.
Cancers (Basel) ; 13(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922652

ABSTRACT

Glioblastoma is one of the most common and lethal primary neoplasms of the brain. Patient survival has not improved significantly over the past three decades and the patient median survival is just over one year. Tumor heterogeneity is thought to be a major determinant of therapeutic failure and a major reason for poor overall survival. This work aims to comprehensively define intra- and inter-tumor heterogeneity by mapping the genomic and mutational landscape of multiple areas of three primary IDH wild-type (IDH-WT) glioblastomas. Using whole exome sequencing, we explored how copy number variation, chromosomal and single loci amplifications/deletions, and mutational burden are spatially distributed across nine different tumor regions. The results show that all tumors exhibit a different signature despite the same diagnosis. Above all, a high inter-tumor heterogeneity emerges. The evolutionary dynamics of all identified mutations within each region underline the questionable value of a single biopsy and thus the therapeutic approach for the patient. Multiregional collection and subsequent sequencing are essential to try to address the clinical challenge of precision medicine. Especially in glioblastoma, this approach could provide powerful support to pathologists and oncologists in evaluating the diagnosis and defining the best treatment option.

6.
Cancers (Basel) ; 12(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322379

ABSTRACT

The secondary structures of Scherer commonly known as perineuronal and perivascular satellitosis have been identified as a histopathological hallmark of diffuse, invasive, high-grade gliomas. They are recognised as perineuronal satellitosis when clusters of neoplastic glial cells surround neurons cell bodies and perivascular satellitosis when such tumour cells surround blood vessels infiltrating Virchow-Robin spaces. In this review, we provide an overview of emerging knowledge regarding how interactions between neurons and glioma cells can modulate tumour evolution and how neurons play a key role in glioma growth and progression, as well as the role of perivascular satellitosis into mechanisms of glioma cells spread. At the same time, we review the current knowledge about the role of perineuronal satellitosis and perivascular satellitosis within the tumour microenvironment (TME), in order to highlight critical knowledge gaps in research space.

7.
Aging (Albany NY) ; 12(16): 15978-15994, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32735554

ABSTRACT

The betaretrovirus Mouse Mammary Tumor Virus (MMTV) is the well characterized etiological agent of mammary tumors in mice. In contrast, the etiology of sporadic human breast cancer (BC) is unknown, but accumulating data indicate a possible viral origin also for these malignancies. The presence of MMTVenv-like sequences (MMTVels) in the human salivary glands and saliva supports the latter as possible route of inter-human dissemination. In the absence of the demonstration of a mouse-man transmission of MMTV, we considered the possibility that a cross-species transmission could have occurred in ancient times. Therefore, we investigated MMTVels in the ancient dental calculus, which originates from saliva and is an excellent material for paleovirology. The calculus was collected from 36 ancient human skulls, excluding any possible mouse contamination. MMTV-like sequences were identified in the calculus of 6 individuals dated from the Copper Age to the 17th century. The MMTV-like sequences were compared with known human endogenous betaretroviruses and with animal exogenous betaretroviruses, confirming their exogenous origin and relation to MMTV. These data reveal that a human exogenous betaretrovirus similar to MMTV has existed at least since 4,500 years ago and indirectly support the hypothesis that it could play a role in human breast cancer.


Subject(s)
Betaretrovirus/isolation & purification , Breast Neoplasms/virology , Cell Transformation, Viral , Retroviridae Infections/transmission , Tumor Virus Infections/transmission , Viral Zoonoses/transmission , Adolescent , Adult , Animals , Betaretrovirus/genetics , Breast Neoplasms/history , Breast Neoplasms, Male/history , Breast Neoplasms, Male/virology , DNA, Viral/genetics , Female , History, 15th Century , History, 16th Century , History, 17th Century , History, Ancient , History, Medieval , Humans , Male , Mammary Tumor Virus, Mouse/genetics , Middle Aged , Phylogeny , Retroviridae Infections/history , Retroviridae Infections/virology , Tumor Virus Infections/history , Tumor Virus Infections/virology , Viral Zoonoses/history , Viral Zoonoses/virology , Young Adult
8.
FASEB J ; 34(1): 1710-1727, 2020 01.
Article in English | MEDLINE | ID: mdl-31914660

ABSTRACT

Despite the importance of the tumor microenvironment in regulating tumor progression, few in vitro models have been developed to understand the effects of non-neoplastic cells and extracellular matrix (ECM) on drug resistance in glioblastoma (GBM) cells. Using CellTrace-labeled human GBM and microglial (MG) cells, we established a 2D co-culture including various ratios of the two cell types. Viability, proliferation, migration, and drug response assays were carried out to assess the role of MG. A 3D model was then established using a hyaluronic acid-gelatin hydrogel to culture a mixture of GBM and MG and evaluate drug resistance. A contact co-culture of fluorescently labeled GBM and MG demonstrated that MG cells modestly promoted tumor cell proliferation (17%-30% increase) and greater migration of GBM cells (>1.5-fold increase). Notably, the presence of MG elicited drug resistance even when in a low ratio (10%-20%) relative to co-cultured tumor cells. The protective effect of MG on GBM was greater in the 3D model (>100% survival of GBM when challenged with cytotoxics). This new 3D human model demonstrated the influence of non-neoplastic cells and matrix on chemoresistance of GBM cells to three agents with different mechanisms of action suggesting that such sophisticated in vitro approaches may facilitate improved preclinical testing.


Subject(s)
Brain Neoplasms/drug therapy , Cell Movement/drug effects , Cell Proliferation/drug effects , Cytotoxins/pharmacology , Drug Resistance, Neoplasm/drug effects , Glioblastoma/drug therapy , Microglia/drug effects , Aged , Antineoplastic Agents/pharmacology , Brain Neoplasms/pathology , Cell Line, Tumor , Coculture Techniques/methods , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Glioblastoma/pathology , Humans , Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Male , Microglia/pathology , Middle Aged , Tumor Microenvironment/drug effects
9.
Int J Mol Sci ; 20(23)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795330

ABSTRACT

The role of astrocytes in the glioblastoma (GBM) microenvironment is poorly understood; particularly with regard to cell invasion and drug resistance. To assess this role of astrocytes in GBMs we established an all human 2D co-culture model and a 3D hyaluronic acid-gelatin based hydrogel model (HyStem™-HP) with different ratios of GBM cells to astrocytes. A contact co-culture of fluorescently labelled GBM cells and astrocytes showed that the latter promotes tumour growth and migration of GBM cells. Notably, the presence of non-neoplastic astrocytes in direct contact, even in low amounts in co-culture, elicited drug resistance in GBM. Recent studies showed that non-neoplastic cells can transfer mitochondria along tunneling nanotubes (TNT) and rescue damaged target cancer cells. In these studies, we explored TNT formation and mitochondrial transfer using 2D and 3D in vitro co-culture models of GBM and astrocytes. TNT formation occurs in glial fibrillary acidic protein (GFAP) positive "reactive" astrocytes after 48 h co-culture and the increase of TNT formations was greater in 3D hyaluronic acid-gelatin based hydrogel models. This study shows that human astrocytes in the tumour microenvironment, both in 2D and 3D in vitro co-culture models, could form TNT connections with GBM cells. We postulate that the association on TNT delivery non-neoplastic mitochondria via a TNT connection may be related to GBM drug response as well as proliferation and migration.


Subject(s)
Astrocytes/drug effects , Brain Neoplasms/drug therapy , Drug Screening Assays, Antitumor/methods , Glioblastoma/drug therapy , Mitochondria/drug effects , Antineoplastic Agents/pharmacology , Astrocytes/metabolism , Brain Neoplasms/metabolism , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Coculture Techniques/methods , Glioblastoma/metabolism , Humans , Mitochondria/metabolism , Tumor Microenvironment/drug effects
10.
Front Oncol ; 9: 547, 2019.
Article in English | MEDLINE | ID: mdl-31297336

ABSTRACT

Trastuzumab is an effective therapeutic treatment for Her2-like breast cancer; despite this most of these tumors develop resistance to therapy due to specific gene mutations or alterations in gene expression. Understanding the mechanisms of resistance to Trastuzumab could be a useful tool in order to identify combinations of drugs that elude resistance and allow a better response for the treated patients. Twelve primary biopsies of Her2+/hormone receptor negative (ER-/PgR-) breast cancer patients were selected based on the specific response to neoadjuvant therapy with Trastuzumab and their whole exome was sequenced leading to the identification of 18 informative gene mutations that discriminate patients selectively based on response to treatment. Among these genes, we focused on the study of the ANKRD44 gene to understand its role in the mechanism of resistance to Trastuzumab. The ANKRD44 gene was silenced in Her2-like breast cancer cell line (BT474), obtaining a partially Trastuzumab-resistant breast cancer cell line that constitutively activates the NF-kb protein via the TAK1/AKT pathway. Following this activation an increase in the level of glycolysis in resistant cells is promoted, also confirmed by the up-regulation of the LDHB protein and by an increased TROP2 protein expression, found generally associated with aggressive tumors. These results allow us to consider the ANKRD44 gene as a potential gene involved in Trastuzumab resistance.

11.
Front Oncol ; 9: 482, 2019.
Article in English | MEDLINE | ID: mdl-31231613

ABSTRACT

Laser capture microdissection (LCM) coupled with RNA-seq is a powerful tool to identify genes that are differentially expressed in specific histological tumor subtypes. To better understand the role of single tumor cell populations in the complex heterogeneity of glioblastoma, we paired microdissection and NGS technology to study intra-tumoral differences into specific histological regions and cells of human GBM FFPE tumors. We here isolated astrocytes, neurons and endothelial cells in 6 different histological contexts: tumor core astrocytes, pseudopalisading astrocytes, perineuronal astrocytes in satellitosis, neurons with satellitosis, tumor blood vessels, and normal blood vessels. A customized protocol was developed for RNA amplification, library construction, and whole transcriptome analysis of each single portion. We first validated our protocol comparing the obtained RNA expression pattern with the gene expression levels of RNA-seq raw data experiments from the BioProject NCBI database, using Spearman's correlation coefficients calculation. We found a good concordance for pseudopalisading and tumor core astrocytes compartments (0.5 Spearman correlation) and a high concordance for perineuronal astrocytes, neurons, normal, and tumor endothelial cells compartments (0.7 Spearman correlation). Then, Principal Component Analysis and differential expression analysis were employed to find differences between tumor compartments and control tissue and between same cell types into distinct tumor contexts. Data consistent with the literature emerged, in which multiple therapeutic targets significant for glioblastoma (such as Integrins, Extracellular Matrix, transmembrane transport, and metabolic processes) play a fundamental role in the disease progression. Moreover, specific cellular processes have been associated with certain cellular subtypes within the tumor. Our results are promising and suggest a compelling method for studying glioblastoma heterogeneity in FFPE samples and its application in both prospective and retrospective studies.

12.
EBioMedicine ; 37: 56-67, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30314897

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most frequent and malignant primary brain tumor in adults and despite the progress in surgical procedures and therapy options, the overall survival remains very poor. Glutamate and α-KG are fundamental elements necessary to support the growth and proliferation of GBM cells. Glutamate oxidative deamination, catalyzed by GLUD2, is the predominant pathway for the production of α-KG. METHODS: GLUD2 emerged from the RNA-seq analysis of 13 GBM patients, performed in our laboratory and a microarray analysis of 77 high-grade gliomas available on the Geo database. Thereafter, we investigated GLUD2 relevance in cancer cell behavior by GLUD2 overexpression and silencing in two different human GBM cell lines. Finally, we overexpressed GLUD2 in-vivo by using zebrafish embryos and monitored the developing central nervous system. FINDINGS: GLUD2 expression was found associated to the histopathological classification, prognosis and survival of GBM patients. Moreover, through in-vitro functional studies, we showed that differences in GLUD2 expression level affected cell proliferation, migration, invasion, colony formation abilities, cell cycle phases, mitochondrial function and ROS production. In support of these findings, we also demonstrated, with in-vivo studies, that GLUD2 overexpression affects glial cell proliferation without affecting neuronal development in zebrafish embryos. INTERPRETATION: We concluded that GLUD2 overexpression inhibited GBM cell growth suggesting a novel potential drug target for control of GBM progression. The possibility to enhance GLUD2 activity in GBM could result in a blocked/reduced proliferation of GBM cells without affecting the survival of the surrounding neurons.


Subject(s)
Glioblastoma/metabolism , Glutamate Dehydrogenase/metabolism , Mitochondrial Proteins/metabolism , Neoplasm Proteins/metabolism , Animals , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/pathology , Glutamate Dehydrogenase/genetics , Humans , Mitochondrial Proteins/genetics , Neoplasm Proteins/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
13.
PLoS One ; 13(7): e0200839, 2018.
Article in English | MEDLINE | ID: mdl-30040851

ABSTRACT

Mouse mammary tumour virus-like (MMTV-like) is suspected to be involved in human breast cancer and it has been hypothesized that companion animals might have a role in viral transmission. The aim of our study was to investigate the presence of MMTV-like nucleotide sequences and viral protein in a larger number of feline (FMCs) and canine mammary carcinomas (CMCs) by nested PCR and immunohistochemistry. Results showed that the presence of MMTV-like env sequence in FMCs was 7% (6/86), while all the CMCs and canine dysplastic lesions scored negative. All PCR-positive FMCs scored positive for the MMTV p14 signal peptide of the envelope precursor protein of the virus. In contrast, all PCR-negative FMCs and canine mammary lesions were also negative for immunohistochemistry analysis. Canine and feline normal mammary gland tissues scored negative for both PCR and MMTV-p14 protein. Multiple nucleotide alignment of MMTV-like env gene sequences isolated from cat showed 97% and 99% similarity with HMTV and MMTV, respectively, while the others two presented some polimorphisms. Particularly the sequences of one of these two tumors showed a polymorphism (c.7575 A> G), that causes a previously unreported amino acid substitution (Thr > Ala). In conclusion, the results of our study showed the presence of MMTV-like sequences and viral protein in some FMCs. Further studies are needed to understand whether this virus does play a role in the development of FMCs, if MMTV-like is an exogenous virus as these data suggest and, in such a case, how and from whom this virus was acquired.


Subject(s)
Gene Products, env/genetics , Mammary Neoplasms, Animal/virology , Mammary Tumor Virus, Mouse/genetics , Animals , Breast/pathology , Cats , DNA, Viral/genetics , Dogs , Female , Genes, env , Immunohistochemistry , Inflammation , Lasers , Mice , Microdissection , Phylogeny , Protein Sorting Signals , Tumor Virus Infections/virology
14.
Front Oncol ; 8: 141, 2018.
Article in English | MEDLINE | ID: mdl-29868468

ABSTRACT

PURPOSE: The purpose of this study is to determine whether mouse mammary tumor virus (MMTV)-associated human breast cancer has the same or similar histology to MMTV-associated mouse mammary tumors. Such associations may indicate a role for MMTV in human breast cancer. METHODS: Immunohistochemical techniques (using antibodies directed against the signal peptide p14 of the envelope precursor protein of MMTV) and polymerase chain reaction (PCR) analyses were used to identify MMTV proteins and MMTV-like envelope gene sequences in a series of breast cancers from Australian women. The histological characteristics of these human breast cancer specimens were compared with MMTV positive mouse mammary tumors. The same methods were used to study benign breast tissues which 1-11 years later developed into breast cancer. RESULTS: MMTV p14 proteins were identified in 27 (54%) of 50 human breast cancers. MMTV env gene sequences were identified by PCR in 12 (27%) of 45 human breast cancers. There was a significant correlation between the presence of MMTV (identified by p14 immunohistochemistry) in human breast cancers and histological characteristics similar to MMTV positive mouse mammary tumors (p = 0.001). There was a non-significant correlation between the presence of MMTV env gene sequences (identified by PCR) in human breast cancers and histological characteristics similar to MMTV positive mouse mammary tumors (p = 0.290). MMTV p14 proteins were identified in 7 (54%) of 13 benign breast specimens that later developed into human breast cancers. MMTV by PCR was identified in two benign specimens one of whom later developed MMTV positive breast cancer. DISCUSSION: These observations offer evidence that MMTV may be associated with characteristic human breast cancer histology. p14-based immunohistochemistry appears to be a more reliable technique than PCR for the identification of MMTV in human breast cancer. Identification of MMTV-associated p14 proteins in benign breast tissues confirms prior PCR-based studies that MMTV infection occurs before the development of MMTV positive breast cancer. CONCLUSION: Many MMTV positive human breast cancers have similar histology to MMTV positive mouse mammary tumors. MMTV infection identified in benign breast tissues precedes development of MMTV positive human breast cancer. When considered in the context of prior studies, these observations indicate a likely role for MMTV in human breast cancer.

15.
Oncotarget ; 9(35): 24014-24027, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29844869

ABSTRACT

Glioblastoma is a devastating disease that despite all the information gathered so far, its optimal management remains elusive due to the absence of validated targets from clinical studies. A better clarification of the molecular mechanisms is needed. In this study, having access to IDH1 wild-type glioblastoma of patients with exceptionally long recurrence free survival (RFS), we decided to compare their mutational and gene expression profile to groups of IDH1 wild-type glioblastoma of patients with shorter RFS, by using NGS technology. The exome analysis revealed that Long-RFS tumors have a lower mutational rate compared to the other groups. A total of 158 genes were found differentially expressed among the groups, 112 of which distinguished the two RFS extreme groups. Overall, the exome data suggests that shorter RFS tumors could be, chronologically, in a more advanced state in the muli-step tumor process of sequential accumulation of mutations. New players in this kind of cancer emerge from the analysis, confirmed at the RNA/DNA level, identifying, therefore, possible oncodrivers or tumor suppressor genes.

16.
Oncotarget ; 8(46): 80416-80428, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29113313

ABSTRACT

Osteosarcoma is the most common pediatric primary non-hematopoietic bone tumor. Survival of these young patients is related to the response to chemotherapy and development of metastases. Despite many advances in cancer research, chemotherapy regimens for osteosarcoma are still based on non-selective cytotoxic drugs. It is essential to investigate new specific molecular therapies for osteosarcoma to increase the survival rate of these patients. We performed exomic sequence analyses of 8 diagnostic biopsies of patients with conventional high grade osteosarcoma to advance our understanding of their genetic underpinnings and to correlate the genetic alteration with the clinical and pathological features of each patient to identify a personalized therapy. We identified 18,275 somatic variations in 8,247 genes and we found three mutated genes in 7/8 (87%) samples (KIF1B, NEB and KMT2C). KMT2C showed the highest number of variations; it is an important component of a histone H3 lysine 4 methyltransferase complex and it is one of the histone modifiers previously implicated in carcinogenesis, never studied in osteosarcoma. Moreover, we found a group of 15 genes that showed variations only in patients that did not respond to therapy and developed metastasis and some of these genes are involved in carcinogenesis and tumor progression in other tumors. These data could offer the opportunity to get a key molecular target to identify possible new strategies for early diagnosis and new therapeutic approaches for osteosarcoma and to provide a tailored treatment for each patient based on their genetic profile.

SELECTION OF CITATIONS
SEARCH DETAIL
...