Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
1.
J Pharmacol Exp Ther ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772718

ABSTRACT

The high prevalence of breast cancer is a global health concern, but there are no safe or effective treatments for it at its advanced stages. These facts urge the development of novel treatment strategies. Annexin A5 (ANXA5) is a natural human protein that binds with high specificity to phosphatidylserine, a phospholipid tightly maintained in the inner leaflet of the cell membrane on most healthy cells but externalized in tumor cells and the tumor vasculature. Here, we have developed a targeted photosensitizer for photothermal therapy (PTT) of solid tumors through the functionalization of single walled carbon nanotubes (SWCNTs) to ANXA5-the SWCNT-ANXA5 conjugate. The ablation of tumors through the SWCNT-ANXA5-mediated PTT synergizes with checkpoint inhibition, creating a systemic anti-cancer immune response. In vitro ablation of cells incubated with the conjugate promoted cell death in a dose-dependent and targeted manner. This treatment strategy was tested in vivo with the orthotopic EMT6 breast tumor model in female balb/cJ mice. Enhanced therapeutic effects were achieved by using intratumoral injection of the conjugate and treating tumors at a lower PTT temperature (45oC). Intratumoral injection prevented the accumulation of the SWCNTs in major clearance organs. When combined with checkpoint inhibition of anti-PD-1, SWCNT-ANXA5-mediated PTT increased survival and 80% of the mice survived for 100 days. Evidence of immune system activation by flow cytometry of splenic cells strengthens the hypothesis of an abscopal effect as a mechanism of prolonged survival. Significance Statement This study demonstrated a relatively high survival rate (80% at 100 days) of mice with aggressive breast cancer when treated with photothermal therapy using the SWCNT-ANXA5 conjugate injected intratumorally and combined with immune stimulation using the anti-PD-1 checkpoint inhibitor. Photothermal therapy was accomplished by maintaining the tumor temperature at a relatively low level of 45oC and avoiding accumulation of the nanotubes in the clearance organs by using intratumoral administration.

2.
Rev Neurol (Paris) ; 180(5): 410-416, 2024 May.
Article in English | MEDLINE | ID: mdl-38609751

ABSTRACT

Genetic cerebellar ataxias are still a diagnostic challenge, and yet not all of them have been identified. Very recently, in early 2023, a new cause of late-onset cerebellar ataxia (LOCA) was identified, spinocerebellar ataxia 27B (SCA27B). This is an autosomal dominant ataxia due to a GAA expansion in intron 1 of the FGF14 gene. Thanks to the many studies carried out since its discovery, it is now possible to define the clinical phenotype, its particularities, and the progression of SCA27B. It has also been established that it is one of the most frequent causes of LOCA. The core phenotype of the disease consists of slowly progressive late-onset ataxia with cerebellar syndrome, oculomotor disorders including downbeat nystagmus, and episodic symptoms such as diplopia. Therapeutic approaches have been proposed, including acetazolamide, and 4-aminopyridine, the latter with a better benefit/tolerance profile.


Subject(s)
Age of Onset , Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/diagnosis , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/etiology , Fibroblast Growth Factors/genetics , Spinocerebellar Degenerations
3.
Organometallics ; 43(4): 540-556, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425384

ABSTRACT

A family of ansa-permethylindenyl-phenoxy (PHENI*) transition-metal chloride complexes has been synthesized and characterized (1-7; {(η5-C9Me6)Me(R″)Si(2-R-4-R'-C6H2O)}MCl2; R,R' = Me, tBu, Cumyl (CMe2Ph); R″ = Me, nPr, Ph; M = Ti, Zr, Hf). The ancillary chloride ligands could readily be exchanged with halides, alkyls, alkoxides, aryloxides, or amides to form PHENI* complexes [L]TiX2 (8-17; X = Br, I, Me, CH2SiMe3, CH2Ph, NMe2, OEt, ODipp). The solid-state crystal structures of these PHENI* complexes indicate that one of two conformations may be preferred, parametrized by a characteristic torsion angle (TA'), in which the η5 system is either disposed away from the metal center or toward it. Compared to indenyl PHENICS complexes, the permethylindenyl (I*) ligand appears to favor a conformation in which the metal center is more accessible. When heterogenized on solid polymethylaluminoxane (sMAO), titanium PHENI* complexes exhibit exceptional catalytic activity toward the polymerization of ethylene. Substantially greater activities are reported than for comparable PHENICS catalysts, along with the formation of ultrahigh-molecular-weight polyethylenes (UHMWPE). Catalyst-cocatalyst ion pairing effects are observed in cationization experiments and found to be significant in homogeneous catalytic regimes; these effects are also related to the influence of the ancillary ligand leaving groups in slurry-phase polymerizations. Catalytic efficiency and polyethylene molecular weight are found to increase with pressure, and PHENI* catalysts can be categorized as being among the most active for the controlled synthesis of UHMWPE.

4.
Ann Rev Mar Sci ; 16: 487-511, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231736

ABSTRACT

Microbialites provide geological evidence of one of Earth's oldest ecosystems, potentially recording long-standing interactions between coevolving life and the environment. Here, we focus on microbialite accretion and growth and consider how environmental and microbial forces that characterize living ecosystems in Shark Bay and the Bahamas interact to form an initial microbialite architecture, which in turn establishes distinct evolutionary pathways. A conceptual three-dimensional model is developed for microbialite accretion that emphasizes the importance of a dynamic balance between extrinsic and intrinsic factors in determining the initial architecture. We then explore how early taphonomic and diagenetic processes modify the initial architecture, culminating in various styles of preservation in the rock record. The timing of lithification of microbial products is critical in determining growth patterns and preservation potential. Study results have shown that all microbialites are not created equal; the unique evolutionary history of an individual microbialite matters.


Subject(s)
Bays , Ecosystem , Bahamas , Biological Evolution , Geologic Sediments
5.
Rev Neurol (Paris) ; 180(1-2): 79-93, 2024.
Article in English | MEDLINE | ID: mdl-38216420

ABSTRACT

Autonomic failure is frequently encountered in synucleinopathies such as multiple system atrophy (MSA), Parkinson's disease (PD), Lewy body disease, and pure autonomic failure (PAF). Cardiovascular autonomic failure affects quality of life and can be life threatening due to the risk of falls and the increased incidence of myocardial infarction, stroke, and heart failure. In PD and PAF, pathogenic involvement is mainly post-ganglionic, while in MSA, the involvement is mainly pre-ganglionic. Cardiovascular tests exploring the autonomic nervous system (ANS) are based on the analysis of continuous, non-invasive recordings of heart rate and digital blood pressure (BP). They assess facets of sympathetic and parasympathetic activities and provide indications on the integrity of the baroreflex arc. The tilt test is widely used in clinical practice. It can be combined with catecholamine level measurement and analysis of baroreflex activity and cardiac variability for a detailed analysis of cardiovascular damage. MIBG myocardial scintigraphy is the most sensitive test for early detection of autonomic dysfunction. It provides a useful measure of post-ganglionic sympathetic fiber integrity and function and is therefore an effective tool for distinguishing PD from other parkinsonian syndromes such as MSA. Autonomic cardiovascular investigations differentiate between certain parkinsonian syndromes that would otherwise be difficult to segregate, particularly in the early stages of the disease. Exploring autonomic failure by gathering information about residual sympathetic tone, low plasma norepinephrine levels, and supine hypertension can guide therapeutic management of orthostatic hypotension (OH).


Subject(s)
Autonomic Nervous System Diseases , Multiple System Atrophy , Parkinson Disease , Pure Autonomic Failure , Synucleinopathies , Humans , Pure Autonomic Failure/complications , Pure Autonomic Failure/diagnosis , Pure Autonomic Failure/therapy , Synucleinopathies/complications , Quality of Life , Autonomic Nervous System Diseases/diagnosis , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/therapy , Multiple System Atrophy/complications , Multiple System Atrophy/diagnosis , Multiple System Atrophy/therapy , Parkinson Disease/complications , Parkinson Disease/diagnosis , Parkinson Disease/therapy
6.
Sci Total Environ ; 912: 168804, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38036117

ABSTRACT

Brine pools in deep-sea environments provide unique perspectives into planetary and geological processes, extremophile microbial communities, and sedimentary records. The NEOM Brine Pool Complex was the first deep-sea brine pool system found in the Gulf of Aqaba, representing a significant extension of the geographical range and depositional setting of Red Sea brine pools. Here, we use a combination of brine pool samples collected via cast using a conductivity, temperature, depth instrument (CTD), as well as interstitial porewaters extracted from a sediment core collected in the NEOM Brine Pool to characterize the chemical composition and subsurface evolution of the brine. New results indicate that the NEOM brines and the subsurface porewaters may originate from different sources. Elemental concentrations suggest the brines in the NEOM pool are likely derived from dissolution of sub-seabed evaporites. In contrast, the sedimentary porewaters appear to have been influenced by periodic turbidite flows, generated either by earthquakes, submarine landslides, or flash floods, in which normal marine waters from the overlying Red Sea became entrained, periodically disturbing the chemistry of the brine pool. Thus, sediment porewaters beneath brine pools may record transient and dynamic changes in these deep marine depositional environments, reflecting the interplay between climate, tectonics, and sedimentation patterns along a rapidly urbanizing coastline. In concert, new results from NEOM extend the range and chemical constraints on Red Sea Brine Pools and highlight the dynamic interplay between Red Sea Deep water, dissolving evaporites, turbidites, and subsurface fluids that produce these unique depositional environments which host microbial life at the edge of habitability. In concert with sedimentological indicators, the chemistry of porewaters beneath deep-sea brine pools may present detailed records of natural hazards arising from interactions between the atmosphere, lithosphere, hydrosphere, and anthroposphere.

7.
Chem Sci ; 15(1): 250-258, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38131091

ABSTRACT

Using a highly active permethylindenyl-phenoxy (PHENI*) titanium catalyst, high to ultra-high molecular weight ethylene-linear-α-olefin (E/LAO) copolymers are prepared in high yields under mild conditions (2 bar, 30-90 °C). Controllable, efficient, and predictable comonomer enchainment provides access to a continuum of copolymer compositions and a vast range of material properties using a single monomer-agnostic catalyst. Multivariate statistical tools are employed that combine the tuneability of this system with the analytical and predictive power of data-derived models, this enables the targeting of polyolefins with designer properties directly through predictive alteration of reaction conditions.

8.
Article in English | MEDLINE | ID: mdl-37946735

ABSTRACT

COVID-19, known as Coronavirus Disease 2019, is a major health issue resulting from novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Its emergence has posed a significant menace to the global medical community and healthcare system across the world. Notably, on December 12, 2020, the Food and Drug Administration (FDA) approved the utilization of the Pfizer and Moderna COVID-19 vaccines. As of July 31, 2022, the United Stated has witnessed over 91.3 million cases of COVID-19 and nearly 1.03 million fatalities. An intriguing observation is the recent reduction in the mortality rate of COVID-19, attributed to an augmented focus on early detection, comprehensive screening, and widespread vaccination. Despite this positive trend in some demographics, it is noteworthy that the overall incidence rates of COVID-19 among African American and Hispanic populations have continued to escalate, even as mortality rates have decreased. Therefore, the objective of this research study is to present an overview of COVID-19, spotlighting the disparities among different racial and ethnic groups. It also delves into the management of COVID-19 within the minority populations. To reach our research objective, we used a publicly available COVID-19 dataset from kaggle:https://www.kaggle.com/datasets/paultimothymooney/covid19-cases-and-deaths-by-race. In addition, we obtained COVID-19 datasets from 10 different states with the highest proportion of African American populations. Many considerable strikes have been made in COVID-19. However, success rate of treatment in the African American population remains relatively limited when compared to other ethnic groups. Hence, there arises a pressing need for novel strategies and innovative approaches to not only encourage prevention measures against COVID-19, but also to increase survival rates, diminish mortality rates, and ultimately improve the health outcomes of ethnic and racial minorities.

9.
Waste Manag ; 171: 545-556, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37806162

ABSTRACT

Sargassum spp. (specifically Sargassum fluitans and S. natans), one of the dominant forms of marine macroalgae (seaweed) found on the beaches of Florida, is washing up on the shores throughout the Caribbean in record quantities. Currently, a common management option is to haul and dispose of beached Sargassum in local landfills, potentially wasting a valuable renewable resource. The objective of this study was to determine whether composting represents a feasible alternative to managing Sargassum inundations through measurements and comparisons to eleven guidelines. Specifically, we assessed the characteristics of the compost [physical-chemical parameters (temperature, moisture content, pH, and conductivity), nutrient ratios (C:N), elemental composition, bacteria levels, and ability to sustain plant growth] in both small- and large scale experiments. Results show that although nutrient concentration ratios were not within the standards outlined by the U.S. Composting Council (USCC), the Sargassum compost was able to sustain the growth of radishes (Raphanus sativus L., var. Champion). Trace metal concentrations in the compost product were within five regulatory guidelines evaluated, except for arsenic (As) (6.64-26.5 mg/kg), which exceeded one of the five (the Florida Soil Cleanup Target Level for residential use). Bacteria levels were consistent with regulatory guidelines for compost produced in large-scale outdoor experiments but not for the small-scale set conducted in enclosed tumblers. Overall results support that Sargassum compost can be beneficially used for fill and some farming applications.

10.
Chem Commun (Camb) ; 59(81): 12128-12131, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37740304

ABSTRACT

Using a highly active supported permethylindenyl-phenoxy (PHENI*) titanium catalyst, high molecular weight ethylene-propylene (EPM) and ethylene-propylene-diene (EPDM) elastomers are prepared using slurry-phase catalysis. Final copolymer composition was found to reflect the monomer feed ratio in a linear fashion, to access a continuum of material properties with a single catalyst. Post-polymerisation crosslinking of EPDM was also demonstrated in a model sulfur vulcanisation system.

11.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240430

ABSTRACT

Diabetes mellitus (DM) is a serious chronic metabolic disease that is associated with hyperglycemia and several complications including cardiovascular disease and chronic kidney disease. DM is caused by high levels of blood sugar in the body associated with the disruption of insulin metabolism and homeostasis. Over time, DM can induce life-threatening health problems such as blindness, heart disease, kidney damage, and stroke. Although the cure of DM has improved over the past decades, its morbidity and mortality rates remain high. Hence, new therapeutic strategies are needed to overcome the burden of this disease. One such prevention and treatment strategy that is easily accessible to diabetic patients at low cost is the use of medicinal plants, vitamins, and essential elements. The research objective of this review article is to study DM and explore its treatment modalities based on medicinal plants and vitamins. To achieve our objective, we searched scientific databases of ongoing trials in PubMed Central, Medline databases, and Google Scholar websites. We also searched databases on World Health Organization International Clinical Trials Registry Platform to collect relevant papers. Results of numerous scientific investigations revealed that phytochemicals present in medicinal plants (Allium sativum, Momordica charantia, Hibiscus sabdariffa L., and Zingiber officinale) possess anti-hypoglycemic activities and show promise for the prevention and/or control of DM. Results also revealed that intake of vitamins C, D, E, or their combination improves the health of diabetes patients by reducing blood glucose, inflammation, lipid peroxidation, and blood pressure levels. However, very limited studies have addressed the health benefits of medicinal plants and vitamins as chemo-therapeutic/preventive agents for the management of DM. This review paper aims at addressing this knowledge gap by studying DM and highlighting the biomedical significance of the most potent medicinal plants and vitamins with hypoglycemic properties that show a great potential to prevent and/or treat DM.


Subject(s)
Diabetes Mellitus , Plants, Medicinal , Humans , Plants, Medicinal/chemistry , Vitamins/therapeutic use , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Blood Glucose/metabolism , Vitamin A/therapeutic use , Vitamin K
12.
Phys Chem Chem Phys ; 25(22): 15463-15468, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37249180

ABSTRACT

The synthesis and characterisation of a bis(iminium)phenoxide diacid cation [4-tBu-C6H2-2,6-(HCN(H)Dipp)-1-O]+ ([H2tBu,DippL]+), is discussed. [H2tBu,DippL][BF4] (1) and [H2tBu,DippL][H2N{B(C6F5)3}2] (2) were synthesised in high yields via protonation of the bis(imino)phenol conjugate base with ethereal HBF4 or Bochmann's acid ([H(OEt2)2][H2N{B(C6F5)3}2]). Both species were fully characterised using NMR and IR spectroscopy as well as X-ray crystallography. The cationic fragment adopts an unusual tautomeric form in which both acidic protons are located on the nitrogen atoms: [HN〈O〉NH]+. This bis(iminium) phenoxide tautomer is stabilised by delocalisation of electron density from oxygen, into the extended π-system of the planar cation, and was found to be 22.6 and 263.1 kJ mol-1 lower in energy (ΔG) than the alternative [N〈OH〉NH]+ and [N〈OH2〉N]+ tautomers respectively. Topological analysis confirmed the presence of two electrostatic N+H⋯O- hydrogen bonds which contribute -111.2 kJ mol-1 towards the stabilisation of the diacid. The pKa values of the cations were estimated, from NMR experiments, to be 4.2 in THF (1) and 11.4 in acetonitrile (2).

13.
J Biomed Res Environ Sci ; 3(9): 1118-1124, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36578651

ABSTRACT

Background: Prostate cancer (PCa) is one of the common cancers in males and its incidence keeps increasing globally. Approximately 81% of PCa is diagnosed during the early stage of the disease. The treatment options for prostate care include surgery, radiotherapy, and chemotherapy, but these treatments often have side effects that may lead to issues such as impotence or decreased bowel function. Our central goal is to test the apoptotic effects of Vernonia amygdalina Delile (an edible medicinal plant that is relatively inexpensive, nontoxic, and virtually without side effects) for the prevention of PCa using human adenocarcinoma (PC-3) cells as a test model. Methods: To address our central goal, PC-3 cells were treated with Vernonia amygdalina Delile (VAD). Cell cycle arrest and cell apoptosis were evaluated by Flow Cytometry assessment. Nucleosomal DNA fragmentation was detected by agarose gel electrophoresis. Results: Flow cytometry data showed that VAD induced cell cycle arrest at the G0/G1 checkpoint and significantly upregulated caspase-3 in treated cells compared to the control cells. Agarose gel electrophoresis resulted in the formation of DNA ladders in VAD-treated cells. Conclusions: These results suggest that inhibition of cancer cell growth, induction of cell cycle arrest, and apoptosis through caspase-3 activation and nucleosomal DNA fragmentation are involved in the therapeutic mechanisms of VAD as a candidate drug towards the prevention and/or treatment of PCa.

14.
J Biomed Res Environ Sci ; 3(8): 980-984, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36186234

ABSTRACT

Breast cancer (BC) is the most common malignancy in women worldwide. In the United States, the lifetime risk of developing an invasive form of breast cancer is 12.5% among women. BC arises in the lining cells (epithelium) of the ducts or lobules in the glandular tissue of the breast. The goal of the present study was to use machine learning (ML) as a novel technology to assess and compare the invasive forms of BC including, infiltrating ductal carcinoma, infiltrating lobular carcinoma, and mucinous carcinoma. To achieve this goal, we used ML algorithms and collected a dataset of 334 BC patients available at https://www.kaggle.com/amandam1/breastcancerdataset and interpreted this dataset based on the form of BC, age, sex, tumor stages, surgery type, and survival rate. Among the 334 patients, 70% were diagnosed with infiltrating ductal carcinoma, 27% with infiltrating lobular carcinoma, and 3% with mucinous carcinoma. Overall, out of 334 BC patients: 64 (19.16%) were in stage I, 189 (56.59%) in stage II, and 81 (24.25%) in stage III. Sixty-six, 67, 96, and 105 patients underwent lumpectomy, simple mastectomy, modified radical mastectomy, and other types of surgery, respectively. The survival rates were 83.4% for stage I, 79.1% for stage II, and 77% for stage III. Findings from the present study demonstrated that ML provides an important tool to curate large amount of BC data, as well as a scientific means to improve BC outcomes.

15.
Ind Eng Chem Res ; 61(30): 10712-10722, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35941853

ABSTRACT

Two Pd/γ-Al2O3 catalysts are examined for the vapor phase hydrogenation of nitrobenzene over the temperature range of 60-200 °C. A 1 wt % catalyst is selected as a reference material that is diluted with γ-alumina to produce a 0.3 wt % sample, which is representative of a metal loading linked to a candidate industrial specification aniline synthesis catalyst. Cyclohexanone oxime is identified as a by-product that is associated with reagent transformation. Temperature-programed infrared spectroscopy and temperature-programed desorption measurements of chemisorbed CO provide information on the morphology of the crystallites of the higher Pd loading catalyst. The lower Pd loading sample exhibits a higher aniline selectivity by virtue of minimization of product overhydrogenation. Reaction testing measurements that were undertaken employing elevated hydrogen flow rates lead to the proposition of separate reagent and product-derived by-product formation pathways, each of which occurs in a consecutive manner. A global reaction scheme is proposed that defines the by-product distribution accessible by the grades of catalyst examined. This information is helpful in defining product purification procedures that would be required in certain heat recovery scenarios connected with large-scale aniline production.

16.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163459

ABSTRACT

Cisplatin and other platinum-based drugs, such as carboplatin, ormaplatin, and oxaliplatin, have been widely used to treat a multitude of human cancers. However, a considerable proportion of patients often relapse due to drug resistance and/or toxicity to multiple organs including the liver, kidneys, gastrointestinal tract, and the cardiovascular, hematologic, and nervous systems. In this study, we sought to provide a comprehensive review of the current state of the science highlighting the use of cisplatin in cancer therapy, with a special emphasis on its molecular mechanisms of action, and treatment modalities including the combination therapy with natural products. Hence, we searched the literature using various scientific databases., such as MEDLINE, PubMed, Google Scholar, and relevant sources, to collect and review relevant publications on cisplatin, natural products, combination therapy, uses in cancer treatment, modes of action, and therapeutic strategies. Our search results revealed that new strategic approaches for cancer treatment, including the combination therapy of cisplatin and natural products, have been evaluated with some degree of success. Scientific evidence from both in vitro and in vivo studies demonstrates that many medicinal plants contain bioactive compounds that are promising candidates for the treatment of human diseases, and therefore represent an excellent source for drug discovery. In preclinical studies, it has been demonstrated that natural products not only enhance the therapeutic activity of cisplatin but also attenuate its chemotherapy-induced toxicity. Many experimental studies have also reported that natural products exert their therapeutic action by triggering apoptosis through modulation of mitogen-activated protein kinase (MAPK) and p53 signal transduction pathways and enhancement of cisplatin chemosensitivity. Furthermore, natural products protect against cisplatin-induced organ toxicity by modulating several gene transcription factors and inducing cell death through apoptosis and/or necrosis. In addition, formulations of cisplatin with polymeric, lipid, inorganic, and carbon-based nano-drug delivery systems have been found to delay drug release, prolong half-life, and reduce systemic toxicity while other formulations, such as nanocapsules, nanogels, and hydrogels, have been reported to enhance cell penetration, target cancer cells, and inhibit tumor progression.


Subject(s)
Biological Products/pharmacology , Cisplatin/pharmacology , Neoplasms/drug therapy , Animals , Biological Products/chemistry , Biological Products/therapeutic use , Cisplatin/chemistry , Cisplatin/therapeutic use , Drug Compounding , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans
17.
J Visc Surg ; 159(5): 383-388, 2022 10.
Article in English | MEDLINE | ID: mdl-34116952

ABSTRACT

GOAL OF THE STUDY: Concomitant liver metastases are discovered at the time of diagnosis in 25% of patients with colorectal cancers. The appropriate time to restore digestive continuity after stoma creation during rectal surgery has not yet been established. The objective of this study is to assess the morbidity of stoma reversal during the secondary hepatectomy procedure. PATIENTS AND METHODS: This was a single-center retrospective case-control study including patients who underwent ileostomy or colostomy reversal by a direct approach (REVERSAL group) compared to those who did not undergo stoma reversal (NON-REVERSAL group) during hepatic resection of rectal cancer metastasis between 2004 and 2016. Peri-operative data were collected. The primary outcome measure was the comprehensive complication index (CCI). The secondary outcomes were overall mortality, liver-related morbidity, duration of hospital stay and occurrence of gastrointestinal leaks. Statistical analysis was carried out using SPSS 23.0 software. RESULTS: Thirty liver resections were included; 14 in the REVERSAL group (female/male=11/19, age=60 years). No statistically significant difference was observed in the CCI scores (15 vs. 20.8; P=0.6). Complications occurred in 9 (64%) and 8 (50%) patients in the REVERSAL and NON-REVERSAL groups, respectively (P=0.48). No gastro-intestinal leaks or post-operative mortality occurred. CONCLUSION: Stoma reversal during hepatectomy for liver metastasis from a primary rectal cancer represents a safe alternative since post-operative outcome was not associated with additional morbidity in this series.


Subject(s)
Rectal Neoplasms , Surgical Stomas , Case-Control Studies , Colostomy/methods , Female , Hepatectomy/adverse effects , Humans , Ileostomy/methods , Liver/pathology , Male , Middle Aged , Postoperative Complications/etiology , Rare Diseases/complications , Rare Diseases/surgery , Rectal Neoplasms/pathology , Rectal Neoplasms/surgery , Retrospective Studies , Surgical Stomas/adverse effects
18.
Emerg Infect Dis ; 28(1): 205-209, 2022 01.
Article in English | MEDLINE | ID: mdl-34807815

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 Delta variant epidemiology in Africa is unknown. We found Delta variant was introduced in Benin during April-May 2021 and became predominant within 2 months, after which a steep increase in reported coronavirus disease incidence occurred. Benin might require increased nonpharmaceutical interventions and vaccination coverage.


Subject(s)
COVID-19 , SARS-CoV-2 , Benin/epidemiology , Humans
19.
Int J Sci Acad Res ; 2(1): 3081-3086, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34825131

ABSTRACT

Breast cancer continues to be the most frequent cancer in females, affecting about one in 8 women and causing the highest number of cancer-related deaths in females worldwide despite remarkable progress in early diagnosis, screening, and patient management. All breast lesions are not malignant, and all the benign lesions do not progress to cancer. However, the accuracy of diagnosis can be increased by a combination or preoperative tests such as physical examination, mammography, fine-needle aspiration cytology, and core needle biopsy. Despite some limitations, these procedures are more accurate, reliable, and acceptable, when compared with a single adopted diagnostic procedure. Recent studies have shown that breast cancer can be accurately predicted and diagnosed using machine learning (ML) technology. The objective of this study was to explore the application of ML approaches to classify breast cancer based on feature values generated from a digitized image of a fine-needle aspiration (FNA) of a breast mass. To achieve this objective, we used ML algorithms, collected a scientific dataset of 569 breast cancer patients from Kaggle (https://www.kaggle.com/uciml/breast-cancer-wisconsin-data), analyze and interpreted the data based on ten real-valued features of a breast mass FNA including the radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and fractal dimension. Among the 569 patients tested, 63% were diagnosed with benign breast cancer and 37% were diagnosed with malignant breast cancer. Benign tumors grow slowly and do not spread while malignant tumors grow rapidly and spread to other parts of the body.

20.
J Food Nutr (Frisco) ; 7(2)2021 06.
Article in English | MEDLINE | ID: mdl-34395868

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It is a serious disease that has caused multiple deaths in various countries in the world. Globally, as of May 23, 2021, the total confirmed cases of COVID-19 have reach 166,346,635 with a total of 3,449,117 deaths. Several recent scientific studies have shown that medicinal plants and vitamins can benefit and improve the health of COVID-19 patients. However, the benefits of medicinal plants and vitamins in the treatment of COVID-19 remain unproven. Therefore, the objective of this article is to expounds the benefits of using medicinal plants (Allium sativum, curcumin, Nigella sativa, Zingiber officitale) and vitamins (vitamin C and vitamin D) that possess the antiviral properties for the prevention and/or control of COVID-19. To reach our objective, we searched scientific databases of ongoing trials in the Centers for Disease Control and Prevention websites, PubMed Central, Medline databases, and Google Scholar websites. We also searched databases on World Health Organization International Clinical Trials Registry Platform to collect relevant papers. We found that all of the selected medicinal plants and vitamins possess antiviral activities, and their individual intake shows promise for the prevention and/or control of COVID-19. We conclude that, the selected medicinal plants and vitamins possess anti-viral properties that are more likely to prevent and/or disrupt the SARS-CoV-2 replication cycle, enhance the human immune system and promote good health.

SELECTION OF CITATIONS
SEARCH DETAIL
...