Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 7166, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935663

ABSTRACT

The conserved SR-like protein Npl3 promotes splicing of diverse pre-mRNAs. However, the RNA sequence(s) recognized by the RNA Recognition Motifs (RRM1 & RRM2) of Npl3 during the splicing reaction remain elusive. Here, we developed a split-iCRAC approach in yeast to uncover the consensus sequence bound to each RRM. High-resolution NMR structures show that RRM2 recognizes a 5´-GNGG-3´ motif leading to an unusual mille-feuille topology. These structures also reveal how RRM1 preferentially interacts with a CC-dinucleotide upstream of this motif, and how the inter-RRM linker and the region C-terminal to RRM2 contribute to cooperative RNA-binding. Structure-guided functional studies show that Npl3 genetically interacts with U2 snRNP specific factors and we provide evidence that Npl3 melts U2 snRNA stem-loop I, a prerequisite for U2/U6 duplex formation within the catalytic center of the Bact spliceosomal complex. Thus, our findings suggest an unanticipated RNA chaperoning role for Npl3 during spliceosome active site formation.


Subject(s)
RNA Splicing , RNA , Nucleic Acid Conformation , Ribonucleoprotein, U2 Small Nuclear/metabolism , RNA/metabolism , RNA, Small Nuclear/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spliceosomes/metabolism
2.
EMBO J ; 42(17): e111719, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37431963

ABSTRACT

Aggregation of the RNA-binding protein TAR DNA-binding protein 43 (TDP-43) is the key neuropathological feature of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). In physiological conditions, TDP-43 is predominantly nuclear, forms oligomers, and is contained in biomolecular condensates assembled by liquid-liquid phase separation (LLPS). In disease, TDP-43 forms cytoplasmic or intranuclear inclusions. How TDP-43 transitions from physiological to pathological states remains poorly understood. Using a variety of cellular systems to express structure-based TDP-43 variants, including human neurons and cell lines with near-physiological expression levels, we show that oligomerization and RNA binding govern TDP-43 stability, splicing functionality, LLPS, and subcellular localization. Importantly, our data reveal that TDP-43 oligomerization is modulated by RNA binding. By mimicking the impaired proteasomal activity observed in ALS/FTLD patients, we found that monomeric TDP-43 forms inclusions in the cytoplasm, whereas its RNA binding-deficient counterpart aggregated in the nucleus. These differentially localized aggregates emerged via distinct pathways: LLPS-driven aggregation in the nucleus and aggresome-dependent inclusion formation in the cytoplasm. Therefore, our work unravels the origins of heterogeneous pathological species reminiscent of those occurring in TDP-43 proteinopathy patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , Humans , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Lobar Degeneration/metabolism , DNA-Binding Proteins/metabolism , Neurons/metabolism , RNA/genetics
3.
Sci Adv ; 9(16): eadf5330, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37075125

ABSTRACT

Mixed-lineage leukemia 1 (MLL1) is a transcription activator of the HOX family, which binds to specific epigenetic marks on histone H3 through its third plant homeodomain (PHD3) domain. Through an unknown mechanism, MLL1 activity is repressed by cyclophilin 33 (Cyp33), which binds to MLL1 PHD3. We determined solution structures of Cyp33 RNA recognition motif (RRM) free, bound to RNA, to MLL1 PHD3, and to both MLL1 and the histone H3 lysine N6-trimethylated. We found that a conserved α helix, amino-terminal to the RRM domain, adopts three different positions facilitating a cascade of binding events. These conformational changes are triggered by Cyp33 RNA binding and ultimately lead to MLL1 release from the histone mark. Together, our mechanistic findings rationalize how Cyp33 binding to MLL1 can switch chromatin to a transcriptional repressive state triggered by RNA binding as a negative feedback loop.


Subject(s)
Histones , Leukemia , Humans , Histones/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , DNA-Binding Proteins/metabolism , RNA
4.
Cell ; 185(22): 4067-4081.e21, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36306733

ABSTRACT

The target DNA specificity of the CRISPR-associated genome editor nuclease Cas9 is determined by complementarity to a 20-nucleotide segment in its guide RNA. However, Cas9 can bind and cleave partially complementary off-target sequences, which raises safety concerns for its use in clinical applications. Here, we report crystallographic structures of Cas9 bound to bona fide off-target substrates, revealing that off-target binding is enabled by a range of noncanonical base-pairing interactions within the guide:off-target heteroduplex. Off-target substrates containing single-nucleotide deletions relative to the guide RNA are accommodated by base skipping or multiple noncanonical base pairs rather than RNA bulge formation. Finally, PAM-distal mismatches result in duplex unpairing and induce a conformational change in the Cas9 REC lobe that perturbs its conformational activation. Together, these insights provide a structural rationale for the off-target activity of Cas9 and contribute to the improved rational design of guide RNAs and off-target prediction algorithms.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, Kinetoplastida , RNA, Guide, Kinetoplastida/metabolism , Endonucleases/metabolism , Base Pairing , Nucleotides , Gene Editing
5.
Nucleic Acids Res ; 50(11): 6300-6312, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35687109

ABSTRACT

Heterogenous nuclear ribonucleoproteins (hnRNPs) are abundant proteins implicated in various steps of RNA processing that assemble on nuclear RNA into larger complexes termed 40S hnRNP particles. Despite their initial discovery 55 years ago, our understanding of these intriguing macromolecular assemblies remains limited. Here, we report the biochemical purification of native 40S hnRNP particles and the determination of their complete protein composition by label-free quantitative mass spectrometry, identifying A-group and C-group hnRNPs as the major protein constituents. Isolated 40S hnRNP particles dissociate upon RNA digestion and can be reconstituted in vitro on defined RNAs in the presence of the individual protein components, demonstrating a scaffolding role for RNA in nucleating particle formation. Finally, we revealed their nanometer scale, condensate-like nature, promoted by intrinsically disordered regions of A-group hnRNPs. Collectively, we identify nuclear 40S hnRNP particles as novel dynamic biomolecular condensates.


Subject(s)
Biomolecular Condensates , Heterogeneous-Nuclear Ribonucleoproteins , Cell Nucleus/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , RNA/metabolism
6.
EMBO J ; 41(1): e107640, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34779515

ABSTRACT

SRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5' splice site (SS), and both factors affect 5' SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it. The mechanistic basis of this relationship is poorly understood. We show here by single-molecule methods that a single molecule of SRSF1 can be recruited by a U1 snRNP. This reaction is independent of exon sequences and separate from the U1-independent process of binding to an ESE. Structural analysis and cross-linking data show that SRSF1 contacts U1 snRNA stem-loop 3, which is required for splicing. We suggest that the recruitment of SRSF1 to a U1 snRNP at a 5'SS is the basis for exon definition by U1 snRNP and might be one of the principal functions of U1 snRNPs in the core reactions of splicing in mammals.


Subject(s)
Exons/genetics , Nucleic Acid Conformation , Ribonucleoprotein, U1 Small Nuclear/metabolism , Serine-Arginine Splicing Factors/metabolism , HeLa Cells , Humans , Models, Biological , Protein Binding , RNA Precursors/metabolism , RNA Splice Sites/genetics , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/metabolism
7.
J Am Chem Soc ; 143(37): 15120-15130, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34520206

ABSTRACT

It is well-accepted that gene expression is heavily influenced by RNA structure. For instance, stem-loops and G-quadruplexes (rG4s) are dynamic motifs in mRNAs that influence gene expression. Adenosine-to-inosine (A-to-I) editing is a common chemical modification of RNA which introduces a nucleobase that is iso-structural with guanine, thereby changing RNA base-pairing properties. Here, we provide biophysical, chemical, and biological evidence that A-to-I exchange can activate latent rG4s by filling incomplete G-quartets with inosine. We demonstrate the formation of inosine-containing rG4s (GI-quadruplexes) in vitro and verify their activity in cells. GI-quadruplexes adopt parallel topologies, stabilized by potassium ions. They exhibit moderately reduced thermal stability compared to conventional G-quadruplexes. To study inosine-induced structural changes in a naturally occurring RNA, we use a synthetic approach that enables site-specific inosine incorporation in long RNAs. In summary, RNA GI-quadruplexes are a previously unrecognized structural motif that may contribute to the regulation of gene expression in vivo.


Subject(s)
G-Quadruplexes , Inosine/chemistry , RNA/chemistry , Base Pairing , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Nucleic Acid Conformation
8.
Nucleic Acids Res ; 49(11): e63, 2021 06 21.
Article in English | MEDLINE | ID: mdl-33677607

ABSTRACT

U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon-intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.


Subject(s)
Ribonucleoprotein, U1 Small Nuclear/chemistry , Binding Sites , Ligands , Magnetic Resonance Spectroscopy , RNA Splicing Factors/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism
9.
Nat Commun ; 12(1): 428, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462199

ABSTRACT

The human prototypical SR protein SRSF1 is an oncoprotein that contains two RRMs and plays a pivotal role in RNA metabolism. We determined the structure of the RRM1 bound to RNA and found that the domain binds preferentially to a CN motif (N is for any nucleotide). Based on this solution structure, we engineered a protein containing a single glutamate to asparagine mutation (E87N), which gains the ability to bind to uridines and thereby activates SMN exon7 inclusion, a strategy that is used to cure spinal muscular atrophy. Finally, we revealed that the flexible inter-RRM linker of SRSF1 allows RRM1 to bind RNA on both sides of RRM2 binding site. Besides revealing an unexpected bimodal mode of interaction of SRSF1 with RNA, which will be of interest to design new therapeutic strategies, this study brings a new perspective on the mode of action of SRSF1 in cells.


Subject(s)
RNA Recognition Motif/genetics , RNA Splice Sites/genetics , RNA Splicing , Serine-Arginine Splicing Factors/metabolism , Survival of Motor Neuron 1 Protein/genetics , Amino Acid Substitution , Asparagine/genetics , Computational Biology , Exons/genetics , Glutamic Acid/genetics , HEK293 Cells , Humans , Molecular Dynamics Simulation , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Nuclear Magnetic Resonance, Biomolecular , Protein Engineering , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/isolation & purification , Serine-Arginine Splicing Factors/ultrastructure , Uridine/metabolism
10.
Angew Chem Int Ed Engl ; 60(6): 3163-3169, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33108679

ABSTRACT

Defects in the functions of RNA binding proteins (RBPs) are at the origin of many diseases; however, targeting RBPs with conventional drugs has proven difficult. PROTACs are a new class of drugs that mediate selective degradation of a target protein through a cell's ubiquitination machinery. PROTACs comprise a moiety that binds the selected protein, conjugated to a ligand of an E3 ligase. Herein, we introduce RNA-PROTACs as a new concept in the targeting of RBPs. These chimeric structures employ small RNA mimics as targeting groups that dock the RNA-binding site of the RBP, whereupon a conjugated E3-recruiting peptide derived from the HIF-1α protein directs the RBP for proteasomal degradation. We performed a proof-of-concept demonstration with the degradation of two RBPs-a stem cell factor LIN28 and a splicing factor RBFOX1-and showed their use in cancer cell lines. The RNA-PROTAC approach opens the way to rapid, selective targeting of RBPs in a rational and general fashion.


Subject(s)
RNA-Binding Proteins/metabolism , RNA/metabolism , Base Sequence , Binding Sites , Cell Line, Tumor , Humans , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Peptides/chemistry , Peptides/metabolism , Proteolysis , RNA/chemistry , RNA Splicing Factors/chemistry , RNA Splicing Factors/metabolism , RNA-Binding Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry
11.
Nat Chem Biol ; 15(12): 1191-1198, 2019 12.
Article in English | MEDLINE | ID: mdl-31636429

ABSTRACT

Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5' splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5' splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon-intron junction and converts the weak 5' splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5' splice site bulge repair.


Subject(s)
RNA Splicing , RNA/chemistry , Molecular Conformation , Muscular Atrophy, Spinal/metabolism , Ribonucleoprotein, U1 Small Nuclear/chemistry
12.
Chimia (Aarau) ; 73(6): 406-414, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31118123

ABSTRACT

Protein-RNA complex formation is at the center of RNA metabolism and leads to the modulation of protein and RNA functions. We propose here a step-by-step guide to investigate these interactions including the identification of the protein and RNA parts involved in complex formation, the determination of the affinity of the complex and the characterization of the protein-RNA interface at amino acid and nucleotide level. Moreover, we briefly review the methods that are the most often used to obtain this information using primarily examples from our lab and finally mention what we perceive as the next challenges in the field.


Subject(s)
RNA/genetics , Amino Acids , Proteins
13.
Nat Commun ; 10(1): 1590, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962446

ABSTRACT

Alternative splicing, a fundamental step in gene expression, is deregulated in many diseases. Splicing factors (SFs), which regulate this process, are up- or down regulated or mutated in several diseases including cancer. To date, there are no inhibitors that directly inhibit the activity of SFs. We designed decoy oligonucleotides, composed of several repeats of a RNA motif, which is recognized by a single SF. Here we show that decoy oligonucleotides targeting splicing factors RBFOX1/2, SRSF1 and PTBP1, can specifically bind to their respective SFs and inhibit their splicing and biological activities both in vitro and in vivo. These decoy oligonucleotides present an approach to specifically downregulate SF activity in conditions where SFs are either up-regulated or hyperactive.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/genetics , Oligonucleotides/pharmacology , Polypyrimidine Tract-Binding Protein/genetics , RNA Splicing Factors/genetics , Serine-Arginine Splicing Factors/genetics , Alternative Splicing , Animals , Animals, Genetically Modified , Binding Sites , Glioblastoma/genetics , Glioblastoma/pathology , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoproteins/antagonists & inhibitors , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , MAP Kinase Signaling System/genetics , Muscle, Skeletal/growth & development , Nonsense Mediated mRNA Decay , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Polypyrimidine Tract-Binding Protein/antagonists & inhibitors , Polypyrimidine Tract-Binding Protein/metabolism , RNA Splicing Factors/antagonists & inhibitors , RNA Splicing Factors/metabolism , Serine-Arginine Splicing Factors/antagonists & inhibitors , Serine-Arginine Splicing Factors/metabolism , Tandem Repeat Sequences , Xenograft Model Antitumor Assays , Zebrafish/embryology , Zebrafish/genetics
14.
Mol Cell ; 73(3): 490-504.e6, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30581145

ABSTRACT

Fused in sarcoma (FUS) is an RNA binding protein involved in regulating many aspects of RNA processing and linked to several neurodegenerative diseases. Transcriptomics studies indicate that FUS binds a large variety of RNA motifs, suggesting that FUS RNA binding might be quite complex. Here, we present solution structures of FUS zinc finger (ZnF) and RNA recognition motif (RRM) domains bound to RNA. These structures show a bipartite binding mode of FUS comprising of sequence-specific recognition of a NGGU motif via the ZnF and an unusual shape recognition of a stem-loop RNA via the RRM. In addition, sequence-independent interactions via the RGG repeats significantly increase binding affinity and promote destabilization of structured RNA conformation, enabling additional binding. We further show that disruption of the RRM and ZnF domains abolishes FUS function in splicing. Altogether, our results rationalize why deciphering the RNA binding mode of FUS has been so challenging.


Subject(s)
RNA-Binding Protein FUS/chemistry , RNA/chemistry , Binding Sites , HeLa Cells , Humans , Models, Molecular , Nucleotide Motifs , Protein Binding , Protein Interaction Domains and Motifs , RNA/genetics , RNA/metabolism , RNA Recognition Motif , RNA Splicing , RNA Stability , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Structure-Activity Relationship , Zinc Fingers
15.
Elife ; 72018 07 31.
Article in English | MEDLINE | ID: mdl-30063205

ABSTRACT

G-quadruplexes are naturally-occurring structures found in RNAs and DNAs. Regular RNA G-quadruplexes are highly stable due to stacked planar arrangements connected by short loops. However, reports of irregular quadruplex structures are increasing and recent genome-wide studies suggest that they influence gene expression. We have investigated a grouping of G2-motifs in the UTRs of eight genes involved in polyamine biosynthesis, and concluded that several likely form novel metastable RNA G-quadruplexes. We performed a comprehensive biophysical characterization of their properties, comparing them to a reference G-quadruplex. Using cellular assays, together with polyamine-depleting and quadruplex-stabilizing ligands, we discovered how some of these motifs regulate and sense polyamine levels, creating feedback loops during polyamine biosynthesis. Using high-resolution 1H-NMR spectroscopy, we demonstrated that a long-looped quadruplex in the AZIN1 mRNA co-exists in salt-dependent equilibria with a hairpin structure. This study expands the repertoire of regulatory G-quadruplexes and demonstrates how they act in unison to control metabolite homeostasis.


Subject(s)
Carrier Proteins/chemistry , DNA/chemistry , G-Quadruplexes , Polyamines/metabolism , 5' Untranslated Regions/genetics , Carrier Proteins/genetics , DNA/genetics , Gene Expression Regulation/genetics , Humans , Ligands , Magnetic Resonance Spectroscopy , Polyamines/chemistry , RNA/chemistry , RNA/genetics
16.
Plant Cell ; 30(8): 1745-1769, 2018 08.
Article in English | MEDLINE | ID: mdl-29934433

ABSTRACT

Malate dehydrogenases (MDHs) convert malate to oxaloacetate using NAD(H) or NADP(H) as a cofactor. Arabidopsis thaliana mutants lacking plastidial NAD-dependent MDH (pdnad-mdh) are embryo-lethal, and constitutive silencing (miR-mdh-1) causes a pale, dwarfed phenotype. The reason for these severe phenotypes is unknown. Here, we rescued the embryo lethality of pdnad-mdh via embryo-specific expression of pdNAD-MDH. Rescued seedlings developed white leaves with aberrant chloroplasts and failed to reproduce. Inducible silencing of pdNAD-MDH at the rosette stage also resulted in white newly emerging leaves. These data suggest that pdNAD-MDH is important for early plastid development, which is consistent with the reductions in major plastidial galactolipid, carotenoid, and protochlorophyllide levels in miR-mdh-1 seedlings. Surprisingly, the targeting of other NAD-dependent MDH isoforms to the plastid did not complement the embryo lethality of pdnad-mdh, while expression of enzymatically inactive pdNAD-MDH did. These complemented plants grew indistinguishably from the wild type. Both active and inactive forms of pdNAD-MDH interact with a heteromeric AAA-ATPase complex at the inner membrane of the chloroplast envelope. Silencing the expression of FtsH12, a key member of this complex, resulted in a phenotype that strongly resembles miR-mdh-1. We propose that pdNAD-MDH is essential for chloroplast development due to its moonlighting role in stabilizing FtsH12, distinct from its enzymatic function.


Subject(s)
Chloroplasts/metabolism , Malate Dehydrogenase/metabolism , Carotenoids/metabolism , Chloroplasts/genetics , Galactolipids/metabolism , Gene Silencing/physiology , Malate Dehydrogenase/genetics , Protochlorophyllide/metabolism
17.
Mol Plant ; 11(8): 1008-1023, 2018 08 06.
Article in English | MEDLINE | ID: mdl-29803952

ABSTRACT

In eukaryotes, the RNase-III Dicer often produces length/sequence microRNA (miRNA) variants, called "isomiRs", owing to intrinsic structural/sequence determinants of the miRNA precursors (pre-miRNAs). In this study, we combined biophysics, genetics and biochemistry approaches to study Arabidopsis miR168, the key feedback regulator of central plant silencing effector protein ARGONAUTE1 (AGO1). We identified a motif conserved among plant pre-miR168 orthologs, which enables flexible internal base-pairing underlying at least three metastable structural configurations. These configurations promote alternative, accurate Dicer cleavage events generating length and structural isomiR168 variants with distinctive AGO sorting properties and modes of action. Among these isomiR168s, a duplex with a 22-nt guide strand exhibits strikingly preferential affinity for AGO10, the closest AGO1 paralog. The 22-nt miR168-AGO10 complex antagonizes AGO1 accumulation in part via "transitive RNAi", a silencing-amplification process, to maintain appropriate AGO1 cellular homeostasis. Furthermore, we found that the tombusviral P19 silencing-suppressor protein displays markedly weaker affinity for the 22-nt form among its isomiR168 cargoes, thereby promoting AGO10-directed suppression of AGO1-mediated antiviral silencing. Taken together, these findings indicate that structural flexibility, a previously overlooked property of pre-miRNAs, considerably increases the versatility and regulatory potential of individual MIRNA genes, and that some pathogens might have evolved the capacity or mechanisms to usurp this property.


Subject(s)
Gene Silencing/physiology , MicroRNAs/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Argonaute Proteins/genetics , Gene Expression Regulation, Plant , RNA, Plant/genetics , Tombusvirus/genetics
18.
Nat Commun ; 8(1): 1476, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29133793

ABSTRACT

Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes. In addition to the therapeutic potential of these molecules for treatment of SMA, our work has wide-ranging implications in understanding how small molecules can interact with specific quaternary RNA structures.


Subject(s)
Muscular Atrophy, Spinal/drug therapy , Piperazines/pharmacology , RNA Precursors/metabolism , RNA Splicing/drug effects , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Biflavonoids/pharmacology , Cell-Free System , Computational Biology , Epoxy Compounds/pharmacology , Exons/genetics , Fibroblasts , HEK293 Cells , HeLa Cells , Humans , Ligands , Macrolides/pharmacology , Muscular Atrophy, Spinal/genetics , Piperazines/chemical synthesis , Protein Binding , Protein Structure, Quaternary , Proteomics/methods , RNA Precursors/genetics , RNA, Messenger/genetics , Spliceosomes/drug effects , Spliceosomes/metabolism , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
19.
Elife ; 62017 06 26.
Article in English | MEDLINE | ID: mdl-28650318

ABSTRACT

HnRNP A1 regulates many alternative splicing events by the recognition of splicing silencer elements. Here, we provide the solution structures of its two RNA recognition motifs (RRMs) in complex with short RNA. In addition, we show by NMR that both RRMs of hnRNP A1 can bind simultaneously to a single bipartite motif of the human intronic splicing silencer ISS-N1, which controls survival of motor neuron exon 7 splicing. RRM2 binds to the upstream motif and RRM1 to the downstream motif. Combining the insights from the structure with in cell splicing assays we show that the architecture and organization of the two RRMs is essential to hnRNP A1 function. The disruption of the inter-RRM interaction or the loss of RNA binding capacity of either RRM impairs splicing repression by hnRNP A1. Furthermore, both binding sites within the ISS-N1 are important for splicing repression and their contributions are cumulative rather than synergistic.


Subject(s)
Heterogeneous Nuclear Ribonucleoprotein A1/chemistry , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , RNA Precursors/metabolism , RNA Recognition Motif , RNA Splicing , Survival of Motor Neuron 1 Protein/genetics , Humans , Magnetic Resonance Spectroscopy , Protein Conformation , RNA Precursors/genetics
20.
Nucleic Acids Res ; 45(13): 8046-8063, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28505313

ABSTRACT

The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 Å X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes.


Subject(s)
RNA Splicing Factors/chemistry , RNA Splicing Factors/metabolism , RNA/metabolism , Amino Acid Substitution , Binding Sites , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , RNA Recognition Motif/genetics , RNA Splicing Factors/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...