Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Pharm Des ; 21(39): 5688-98, 2015.
Article in English | MEDLINE | ID: mdl-26323410

ABSTRACT

Among pediatric patients, preterm neonates and newborns are the most vulnerable subpopulation. Rapid developmental changes of physiological factors affecting the pharmacokinetics of drug substances in newborns require extreme care in dose and dose regimen decisions. These decisions could be supported by in silico methods such as physiologically-based pharmacokinetic (PBPK) modeling. In a comprehensive literature search, the physiological information of preterm neonates that is required to establish a PBPK model has been summarized and implemented into the database of a generic PBPK software. Physiological parameters include the organ weights and blood flow rates, tissue composition, as well as ontogeny information about metabolic and elimination processes in the liver and kidney. The aim of this work is to evaluate the model's accuracy in predicting the pharmacokinetics following intravenous administration of two model drugs with distinct physicochemical properties and elimination pathways based on earlier reported in vivo data. To this end, PBPK models of amikacin and paracetamol have been set up to predict their plasma levels in preterm neonates. Predicted plasma concentration-time profiles were compared to experimentally obtained in vivo data. For both drugs, plasma concentration time profiles following single and multiple dosing were appropriately predicted for a large range gestational and postnatal ages. In summary, PBPK simulations in preterm neonates appear feasible and might become a useful tool in the future to support dosing decisions in this special patient population.


Subject(s)
Infant, Premature , Models, Biological , Pharmacokinetics , Humans , Infant, Newborn
2.
Front Physiol ; 4: 4, 2013.
Article in English | MEDLINE | ID: mdl-23404365

ABSTRACT

The renin-angiotensin-aldosterone system (RAAS) plays a key role in the pathogenesis of cardiovascular disorders including hypertension and is one of the most important targets for drugs. A whole body physiologically based pharmacokinetic (wb PBPK) model integrating this hormone circulation system and its inhibition can be used to explore the influence of drugs that interfere with this system, and thus to improve the understanding of interactions between drugs and the target system. In this study, we describe the development of a mechanistic RAAS model and exemplify drug action by a simulation of enalapril administration. Enalapril and its metabolite enalaprilat are potent inhibitors of the angiotensin-converting-enzyme (ACE). To this end, a coupled dynamic parent-metabolite PBPK model was developed and linked with the RAAS model that consists of seven coupled PBPK models for aldosterone, ACE, angiotensin 1, angiotensin 2, angiotensin 2 receptor type 1, renin, and prorenin. The results indicate that the model represents the interactions in the RAAS in response to the pharmacokinetics (PK) and pharmacodynamics (PD) of enalapril and enalaprilat in an accurate manner. The full set of RAAS-hormone profiles and interactions are consistently described at pre- and post-administration steady state as well as during their dynamic transition and show a good agreement with literature data. The model allows a simultaneous representation of the parent-metabolite conversion to the active form as well as the effect of the drug on the hormone levels, offering a detailed mechanistic insight into the hormone cascade and its inhibition. This model constitutes a first major step to establish a PBPK-PD-model including the PK and the mode of action (MoA) of a drug acting on a dynamic RAAS that can be further used to link to clinical endpoints such as blood pressure.

3.
Front Physiol ; 3: 494, 2012.
Article in English | MEDLINE | ID: mdl-23355822

ABSTRACT

A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption.

SELECTION OF CITATIONS
SEARCH DETAIL