Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 28(36): 365001, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27392275

ABSTRACT

Despite the now vast body of two-dimensional materials under study, bilayer graphene remains unique in two ways: it hosts a simultaneously tunable band gap and electron density; and stems from simple fabrication methods. These two advantages underscore why bilayer graphene is critical as a material for optoelectronic applications. In the work that follows, we calculate the one- and two-photon absorption coefficients for degenerate interband absorption in a graphene bilayer hosting an asymmetry gap and adjustable chemical potential-all at finite temperature. Our analysis is comprehensive, characterizing one- and two-photon absorptive behavior over wide ranges of photon energy, gap, chemical potential, and thermal broadening. The two-photon absorption coefficient for bilayer graphene displays a rich structure as a function of photon energy and band gap due to the existence of multiple absorption pathways and the nontrivial dispersion of the low energy bands. This systematic work will prove integral to the design of bilayer-graphene-based nonlinear optical devices.

2.
Phys Rev Lett ; 110(25): 250504, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23829722

ABSTRACT

We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm.

3.
Opt Express ; 21(5): 6169-79, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482185

ABSTRACT

We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the quantum Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent field which suppresses the cavity field buildup and alters the path of a weak signal beam. We predict more than 35 dB of switching contrast with less than 0.1 dB loss using just 2 µW of control-beam power for signal beams with less than single photon intensities inside the cavity.

4.
Opt Lett ; 34(16): 2539-41, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19684842

ABSTRACT

The coherent propagation of four optical pulses through a multilevel resonant medium is investigated theoretically. We present a self-consistent analytic solution without steady-state or adiabatic approximations and use numerical simulations to indicate that the analytic formulas can be used as a guide in an experimental setting.

5.
Opt Lett ; 31(19): 2921-3, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16969423

ABSTRACT

We analyze the propagation of fast-light pulses through a finite-length resonant gain medium both analytically and numerically. We find that intrinsic instabilities can be avoided in attaining a substantial peak advance with an ultrashort rather than a long or adiabatic probe.

SELECTION OF CITATIONS
SEARCH DETAIL
...