Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 14(1): 15592, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971841

ABSTRACT

The production of cultured red blood cells (cRBC) for transfusion purposes requires large scale cultures and downstream processes to purify enucleated cRBC. The membrane composition, and cholesterol content in particular, are important during proliferation of (pro)erythroblasts and for cRBC quality. Therefore, we tested the requirement for cholesterol in the culture medium during expansion and differentiation of erythroid cultures with respect to proliferation, enucleation and purification by filtration. The low cholesterol level (22 µg/dl) in serum free medium was sufficient to expand (pro)erythroblast cultures. Addition of 2.0 or 5.0 mg/dL of free cholesterol at the start of differentiation induction inhibited enucleation compared to the default condition containing 3.3 mg/dl total cholesterol derived from the addition of Omniplasma to serum free medium. Addition of 5.0 mg/dl cholesterol at day 5 of differentiation did not affect the enucleation process but significantly increased recovery of enucleated cRBC following filtration over leukodepletion filters. The addition of cholesterol at day 5 increased the osmotic resistance of cRBC. In conclusion, cholesterol supplementation after the onset of enucleation improved the robustness of cRBC and increased the yield of enucleated cRBC in the purification process.


Subject(s)
Cholesterol , Culture Media , Erythrocytes , Cholesterol/metabolism , Humans , Erythrocytes/metabolism , Culture Media/chemistry , Cells, Cultured , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Culture Techniques/methods , Erythroblasts/metabolism , Erythroblasts/cytology , Culture Media, Serum-Free
2.
Gene Ther ; 13(9): 789-97, 2006 May.
Article in English | MEDLINE | ID: mdl-16421601

ABSTRACT

Adoptive transfer of T lymphocytes is an attractive strategy for many experimental treatment strategies for cancer. Unfortunately, manipulated T cells could be responsible for serious adverse events. Retroviral CD20-transduced T cells may be able to control these unwanted effects. CD20-positive cells are sensitive to rituximab (RTX), a monoclonal antibody specific for CD20. This permits their selective elimination in vivo in case of adverse events. To this end, a system is required that permits efficient and safe transduction of donor T cells and effective elimination of CD20-positive T cells. We constructed different CD20-encoding retroviral vectors and investigated the impact of inclusion of the woodchuck post-transcriptional regulatory element (WPRE) and the chicken hypersensitivity site 4 insulator elements on the levels, homogeneity and stability of CD20 expression. Importantly, inclusion of either WPRE or insulator elements in the retroviral vector resulted in a dramatic improvement in the stability of CD20 expression. The insulator element also led to a much more homogeneous level of CD20 expression. We also show the efficient elimination of the CD20-transgenic T cells via RTX by different effector mechanisms. In conclusion, we have constructed CD20-encoding retroviral vectors with improved efficiency and safety profiles, which can be used as a suicide strategy.


Subject(s)
Adoptive Transfer/adverse effects , Antigens, CD20/genetics , Genes, Transgenic, Suicide , Genetic Therapy/methods , Graft vs Host Disease/therapy , T-Lymphocytes/metabolism , Adoptive Transfer/methods , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Murine-Derived , Cell Death , Clone Cells , Flow Cytometry , Gene Expression , Genetic Engineering , Genetic Vectors/genetics , Graft vs Host Disease/etiology , Graft vs Host Disease/immunology , Humans , Lymphocyte Depletion , Retroviridae/genetics , Rituximab , T-Lymphocytes/pathology , Transduction, Genetic/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...