Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1077(3): 400-6, 1991 Apr 29.
Article in English | MEDLINE | ID: mdl-2029539

ABSTRACT

Cyclic voltammetric and chronoamperometric data are consistent with a process in which 3,4-dihydroxymandelic acid (DOMA) is oxidized initially in a two-electron step to its corresponding o-benzoquinone. This species is unstable and undergoes the rate-determining loss of CO2 (k = 1.6 s-1 at pH 6 and 25 degrees C) to give an unobserved p-benzoquinone methide intermediate that rapidly isomerizes to 3,4-dihydroxybenzaldehyde (DOBAL), DOBAL is also electroactive at the applied potential and is oxidized in a two-electron step to 4-formyl-1,2-benzoquinone. Subsequent reactions of 4-formyl-1,2-benzoquinone include the oxidation of unreacted DOMA and the hydration of its aldehyde functional group. Oxidation of DOMA directly to its p-benzoquinone methide apparently does not occur. Derivatives of mandelic acid (e.g., 4-hydroxymandelic acid) that are expected to give only their corresponding p-benzoquinone methides upon oxidation afford redox behavior that differs distinctly from that for DOMA.


Subject(s)
Benzaldehydes/metabolism , Catechols/metabolism , Mandelic Acids/metabolism , Chromatography, High Pressure Liquid , Decarboxylation , Electrochemistry , Hydrogen-Ion Concentration , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...