Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Med Chem ; 60(18): 7764-7780, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28817277

ABSTRACT

We previously observed a cutaneous type IV immune response in nonhuman primates (NHP) with the mGlu5 negative allosteric modulator (NAM) 7. To determine if this adverse event was chemotype- or mechanism-based, we evaluated a distinct series of mGlu5 NAMs. Increasing the sp3 character of high-throughput screening hit 40 afforded a novel morpholinopyrimidone mGlu5 NAM series. Its prototype, (R)-6-neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-one (PF-06462894, 8), possessed favorable properties and a predicted low clinical dose (2 mg twice daily). Compound 8 did not show any evidence of immune activation in a mouse drug allergy model. Additionally, plasma samples from toxicology studies confirmed that 8 did not form any reactive metabolites. However, 8 caused the identical microscopic skin lesions in NHPs found with 7, albeit with lower severity. Holistically, this work supports the hypothesis that this unique toxicity may be mechanism-based although additional work is required to confirm this and determine clinical relevance.


Subject(s)
Allosteric Regulation/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Pyridines/pharmacology , Pyridines/pharmacokinetics , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Female , HEK293 Cells , Heterocyclic Compounds, 3-Ring/adverse effects , Heterocyclic Compounds, 3-Ring/chemistry , Humans , Male , Molecular Docking Simulation , Pyridines/adverse effects , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 25(21): 4941-4944, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25987375

ABSTRACT

Facilitating activation, or delaying inactivation, of the native Kv7 channel reduces neuronal excitability, which may be beneficial in controlling spontaneous electrical activity during epileptic seizures. In an effort to identify a compound with such properties, the structure-activity relationship (SAR) and in vitro ADME for a series of heterocyclic Kv7.2-7.5 channel openers was explored. PF-05020182 (2) demonstrated suitable properties for further testing in vivo where it dose-dependently decreased the number of animals exhibiting full tonic extension convulsions in response to corneal stimulation in the maximal electroshock (MES) assay. In addition, PF-05020182 (2) significantly inhibited convulsions in the MES assay at doses tested, consistent with in vitro activity measure. The physiochemical properties, in vitro and in vivo activities of PF-05020182 (2) support further development as an adjunctive treatment of refractory epilepsy.


Subject(s)
Drug Discovery , Epilepsy/drug therapy , Ion Channel Gating/drug effects , KCNQ2 Potassium Channel/metabolism , Piperidines/pharmacology , Pyrimidines/pharmacology , Animals , Cell Line , Dose-Response Relationship, Drug , Electroshock , Humans , KCNQ2 Potassium Channel/agonists , Microsomes/drug effects , Molecular Structure , Piperidines/administration & dosage , Piperidines/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
3.
J Med Chem ; 57(3): 861-77, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24392688

ABSTRACT

A novel series of pyrazolopyrazines is herein disclosed as mGluR5 negative allosteric modulators (NAMs). Starting from a high-throughput screen (HTS) hit (1), a systematic structure-activity relationship (SAR) study was conducted with a specific focus on balancing pharmacological potency with physicochemical and pharmacokinetic (PK) properties. This effort led to the discovery of 1-methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo[3,4-b]pyrazine (PF470, 14) as a highly potent, selective, and orally bioavailable mGluR5 NAM. Compound 14 demonstrated robust efficacy in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-rendered Parkinsonian nonhuman primate model of l-DOPA-induced dyskinesia (PD-LID). However, the progression of 14 to the clinic was terminated because of a potentially mechanism-mediated finding consistent with a delayed-type immune-mediated type IV hypersensitivity in a 90-day NHP regulatory toxicology study.


Subject(s)
Pyrazines/chemical synthesis , Pyrazoles/chemical synthesis , Receptor, Metabotropic Glutamate 5/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Administration, Oral , Allosteric Regulation , Animals , Antiparkinson Agents/adverse effects , Biological Availability , Cell Membrane Permeability , Dogs , Dyskinesia, Drug-Induced/drug therapy , HEK293 Cells , Humans , Hypersensitivity, Delayed/chemically induced , Levodopa/adverse effects , Macaca fascicularis , Madin Darby Canine Kidney Cells , Male , Microsomes, Liver/metabolism , Models, Molecular , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/physiopathology , Pyrazines/pharmacology , Pyrazines/toxicity , Pyrazoles/pharmacology , Pyrazoles/toxicity , Radioligand Assay , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
4.
J Med Chem ; 55(21): 9055-68, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-23025719

ABSTRACT

Phosphodiesterase 9A inhibitors have shown activity in preclinical models of cognition with potential application as novel therapies for treating Alzheimer's disease. Our clinical candidate, PF-04447943 (2), demonstrated acceptable CNS permeability in rats with modest asymmetry between central and peripheral compartments (free brain/free plasma = 0.32; CSF/free plasma = 0.19) yet had physicochemical properties outside the range associated with traditional CNS drugs. To address the potential risk of restricted CNS penetration with 2 in human clinical trials, we sought to identify a preclinical candidate with no asymmetry in rat brain penetration and that could advance into development. Merging the medicinal chemistry strategies of structure-based design with parallel chemistry, a novel series of PDE9A inhibitors was identified that showed improved selectivity over PDE1C. Optimization afforded preclinical candidate 19 that demonstrated free brain/free plasma ≥ 1 in rat and reduced microsomal clearance along with the ability to increase cyclic guanosine monophosphosphate levels in rat CSF.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Azetidines/chemistry , Blood-Brain Barrier/metabolism , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Pyrimidinones/chemistry , 3',5'-Cyclic-AMP Phosphodiesterases/chemistry , Administration, Oral , Animals , Azetidines/chemical synthesis , Azetidines/pharmacokinetics , Crystallography, X-Ray , Cyclic GMP/cerebrospinal fluid , Cyclopentanes/chemical synthesis , Cyclopentanes/chemistry , Cyclopentanes/pharmacokinetics , Databases, Factual , Dogs , Drug Design , Humans , Models, Molecular , Molecular Structure , Pyrazoles/pharmacokinetics , Pyrimidines/pharmacokinetics , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacokinetics , Rats , Stereoisomerism , Structure-Activity Relationship
5.
J Med Chem ; 55(21): 9045-54, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-22780914

ABSTRACT

6-[(3S,4S)-4-Methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (PF-04447943) is a novel PDE9A inhibitor identified using parallel synthetic chemistry and structure-based drug design (SBDD) and has advanced into clinical trials. Selectivity for PDE9A over other PDE family members was achieved by targeting key residue differences between the PDE9A and PDE1C catalytic site. The physicochemical properties of the series were optimized to provide excellent in vitro and in vivo pharmacokinetics properties in multiple species including humans. It has been reported to elevate central cGMP levels in the brain and CSF of rodents. In addition, it exhibits procognitive activity in several rodent models and synaptic stabilization in an amyloid precursor protein (APP) transgenic mouse model. Recent disclosures from clinical trials confirm that it is well tolerated in humans and elevates cGMP in cerebral spinal fluid of healthy volunteers, confirming that it is a quality pharmacological tool for testing clinical hypotheses in disease states associated with impairment of cGMP signaling or cognition.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Brain/metabolism , Cognition Disorders/drug therapy , Pyrazoles/chemical synthesis , Pyrimidinones/chemical synthesis , Amyloid beta-Protein Precursor/genetics , Animals , Catalytic Domain , Crystallography, X-Ray , Cyclic GMP/metabolism , Dogs , Drug Design , Hippocampus/drug effects , Hippocampus/physiology , Humans , Long-Term Potentiation/drug effects , Maze Learning/drug effects , Mice , Mice, Transgenic , Microsomes, Liver/metabolism , Models, Molecular , Protein Conformation , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidinones/pharmacokinetics , Pyrimidinones/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Synapses/drug effects , Synapses/physiology
6.
ACS Med Chem Lett ; 3(3): 187-92, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-24900455

ABSTRACT

Kynurenine aminotransferase (KAT) II has been identified as a potential new target for the treatment of cognitive impairment associated with schizophrenia and other psychiatric disorders. Following a high-throughput screen, cyclic hydroxamic acid PF-04859989 was identified as a potent and selective inhibitor of human and rat KAT II. An X-ray crystal structure and (13)C NMR studies of PF-04859989 bound to KAT II have demonstrated that this compound forms a covalent adduct with the enzyme cofactor, pyridoxal phosphate (PLP), in the active site. In vivo pharmacokinetic and efficacy studies in rat show that PF-04859989 is a brain-penetrant, irreversible inhibitor and is capable of reducing brain kynurenic acid by 50% at a dose of 10 mg/kg (sc). Preliminary structure-activity relationship investigations have been completed and have identified the positions on this scaffold best suited to modification for further optimization of this novel series of KAT II inhibitors.

7.
PLoS One ; 5(8): e12011, 2010 Aug 09.
Article in English | MEDLINE | ID: mdl-20711499

ABSTRACT

BACKGROUND: Abolishing the inhibitory signal of intracellular cAMP by phosphodiesterases (PDEs) is a prerequisite for effector T (Teff) cell function. While PDE4 plays a prominent role, its control of cAMP levels in Teff cells is not exclusive. T cell activation has been shown to induce PDE8, a PDE isoform with 40- to 100-fold greater affinity for cAMP than PDE4. Thus, we postulated that PDE8 is an important regulator of Teff cell functions. METHODOLOGY/PRINCIPAL FINDINGS: We found that Teff cells express PDE8 in vivo. Inhibition of PDE8 by the PDE inhibitor dipyridamole (DP) activates cAMP signaling and suppresses two major integrins involved in Teff cell adhesion. Accordingly, DP as well as the novel PDE8-selective inhibitor PF-4957325-00 suppress firm attachment of Teff cells to endothelial cells. Analysis of downstream signaling shows that DP suppresses proliferation and cytokine expression of Teff cells from Crem-/- mice lacking the inducible cAMP early repressor (ICER). Importantly, endothelial cells also express PDE8. DP treatment decreases vascular adhesion molecule and chemokine expression, while upregulating the tight junction molecule claudin-5. In vivo, DP reduces CXCL12 gene expression as determined by in situ probing of the mouse microvasculature by cell-selective laser-capture microdissection. CONCLUSION/SIGNIFICANCE: Collectively, our data identify PDE8 as a novel target for suppression of Teff cell functions, including adhesion to endothelial cells.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Cyclic AMP Response Element Modulator/metabolism , T-Lymphocytes/cytology , 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Chemokine CXCL12/genetics , Claudin-5 , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cytokines/metabolism , Dipyridamole/pharmacology , Endothelium, Vascular/cytology , Female , Gene Expression Regulation, Enzymologic/drug effects , Hydrolysis , Intracellular Space/drug effects , Intracellular Space/metabolism , Membrane Proteins/metabolism , Mice , Phosphodiesterase Inhibitors/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Th1 Cells/drug effects , Th1 Cells/metabolism , Tight Junctions/drug effects , Tight Junctions/metabolism , Time Factors
8.
J Pharmacol Exp Ther ; 330(2): 430-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19458106

ABSTRACT

The circadian clock links our daily cycles of sleep and activity to the external environment. Deregulation of the clock is implicated in a number of human disorders, including depression, seasonal affective disorder, and metabolic disorders. Casein kinase 1 epsilon (CK1epsilon) and casein kinase 1 delta (CK1delta) are closely related Ser-Thr protein kinases that serve as key clock regulators as demonstrated by mammalian mutations in each that dramatically alter the circadian period. Therefore, inhibitors of CK1delta/epsilon may have utility in treating circadian disorders. Although we previously demonstrated that a pan-CK1delta/epsilon inhibitor, 4-[3-cyclohexyl-5-(4-fluoro-phenyl)-3H-imidazol-4-yl]-pyrimidin-2-ylamine (PF-670462), causes a significant phase delay in animal models of circadian rhythm, it remains unclear whether one of the kinases has a predominant role in regulating the circadian clock. To test this, we have characterized 3-(3-chloro-phenoxymethyl)-1-(tetrahydro-pyran-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-ylamine (PF-4800567), a novel and potent inhibitor of CK1epsilon (IC(50) = 32 nM) with greater than 20-fold selectivity over CK1delta. PF-4800567 completely blocks CK1epsilon-mediated PER3 nuclear localization and PER2 degradation. In cycling Rat1 fibroblasts and a mouse model of circadian rhythm, however, PF-4800567 has only a minimal effect on the circadian clock at concentrations substantially over its CK1epsilon IC(50). This is in contrast to the pan-CK1delta/epsilon inhibitor PF-670462 that robustly alters the circadian clock under similar conditions. These data indicate that CK1epsilon is not the predominant mediator of circadian timing relative to CK1delta. PF-4800567 should prove useful in probing unique roles between these two kinases in multiple signaling pathways.


Subject(s)
Casein Kinase 1 epsilon/antagonists & inhibitors , Casein Kinase 1 epsilon/metabolism , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Animals , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred C57BL , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology
9.
J Org Chem ; 64(22): 8267-8274, 1999 Oct 29.
Article in English | MEDLINE | ID: mdl-11674747

ABSTRACT

A synthetic approach was developed to the C1-C28 subunit of spongistatin 1 (altohyrtin A, 65). The key step was the coupling of the AB and CD spiroketal moieties via an anti-aldol reaction of aldehyde 62 and ethyl ketone 57. The development of a method for the construction of the AB spiroketal fragment is described and included the desymmetrization of C(2)-symmetric diketone 10 and the differentiation of the two primary alcohols of 16. Further elaboration of this advanced intermediate to the desired aldehyde 62 included an Evans' syn-aldol reaction and Tebbe olefination. The synthesis of the CD spiroketal fragment 56 involved the ketalization of a triol-dione, generated in situ by deprotection of 45, to provide a favorable ratio (6-7:1) of spiroketal isomers 46 and 47, respectively. The overall protecting group strategy, involving many selective manipulations of silyl protecting groups, was successfully developed to provide the desired C1-C28 subunit of spongistatin 1 (altohyrtin A) (65).

10.
SELECTION OF CITATIONS
SEARCH DETAIL
...