Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 69(2): 391-9, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12377988

ABSTRACT

In developing exposure standards, an assumption is often made in the case of less-than-lifetime exposures that the probability of response depends on the cumulative exposure, i.e., the product of exposure concentration and duration. Over the last two decades, the general applicability of this assumption, referred to as Haber's Law, has begun to be questioned. This study examined the interaction of exposure concentration and duration on embryonic development during a portion of organogenesis. Embryos were exposed in whole embryo culture to various temperature-duration combinations and evaluated for alterations in development 24 h later. The specific purpose of the study was to assess whether the developmental responses followed Haber's Law, or whether an additional component of exposure was needed to model the relationship. The current study demonstrated that the response of the developing embryo to hyperthermia, with rare exception, was dependent on an additional component of exposure beyond the cumulative exposure. For the vast majority of the parameters measured in this study, the probability of an effect was greater at higher temperatures for short durations than at lower temperatures for long durations, given the same cumulative exposure. Thus, Haber's Law did not adequately describe the results of our study.


Subject(s)
Embryonic and Fetal Development/physiology , Fever/physiopathology , Algorithms , Animals , Embryo, Mammalian/anatomy & histology , Female , In Vitro Techniques , Models, Statistical , Pregnancy , Probability , Rats , Rats, Sprague-Dawley , Somites/physiology , Temperature , Time Factors
2.
Reprod Toxicol ; 13(1): 31-9, 1999.
Article in English | MEDLINE | ID: mdl-10080297

ABSTRACT

Epidemiologic studies strongly suggest that in utero exposure to hyperthermia results in developmental defects in humans. Rats, mice, guinea pigs, and other species exposed to hyperthermia also exhibit a variety of developmental defects. Studies in our laboratory have focused on exposure to hyperthermia on Gestation Day (GD) 10 of rats in vivo or in vitro. Within 24 h after in vivo or in vitro exposure, delayed or abnormal CNS, optic cup, somite, and limb development can be observed. At birth, only rib and vertebral malformations are seen after hyperthermia on GD 10, and these have been shown to be due to alterations in somite segmentation. Unsegmented somites have been thought to result from a cell-cycle block in the presomitic mesoderm, from which somites emerge individually during normal development. In the present study, DNA fragmentation (terminal deoxynucleotidyl transferase (TdT) catalyzed fluorescein-12-dUTP DNA end-labelling), indicative of apoptotic cell death, and changes in cell proliferation were examined in vitro in 37 degrees C control and heat treated (42 degrees C for 15 min) GD 10 CD rat embryos. Embryos were returned to 37 degrees C culture following exposure and evaluated 5, 8, or 18 h later. A temperature-related increase in TdT labelled cells was observed in the CNS, optic vesicle, neural tube, and somites. Increased cell death in the presomitic mesoderm also was evident. Changes in cell proliferation were examined using the cell-specific abundance of proliferating cell nuclear antigen (PCNA) and the quantification of mitotic figures. In neuroectodermal cells in the region of the optic cup, a change in the abundance of PCNA was not apparent, but a marked decrease in mitotic figures was observed. A significant change in cell proliferation in somites was not detected by either method. These results suggest that acute hyperthermia disrupts embryonic development through a combination of inappropriate cell death and/or altered cell proliferation in discrete regions of the developing rat embryo. Furthermore, postnatal vertebral and rib defects following disrupted somite development may be due, in part, to abundant cell death occurring in the presomitic mesoderm.


Subject(s)
Congenital Abnormalities/pathology , Embryonic and Fetal Development , Heat-Shock Response , Hyperthermia, Induced , Animals , Cell Death , Cell Division , Congenital Abnormalities/etiology , DNA/analysis , DNA/metabolism , DNA Nucleotidylexotransferase/metabolism , Female , Immunohistochemistry , Male , Mitosis , Pregnancy , Proliferating Cell Nuclear Antigen/analysis , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...