Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 50(8): 1440-5, 2000 08.
Article in English | MEDLINE | ID: mdl-11002606

ABSTRACT

The revised National Ambient Air Quality Standards for PM include fine particulate standards based upon mass measurements of PM2.5. It is possible in arid and semi-arid regions to observe significant coarse mode intrusion in the PM2.5 measurement. In this work, continuous PM10, PM2.5, and PM1.0 were measured during several windblown dust events in Spokane, WA. PM2.5 constituted approximately 30% of the PM10 during the dust event days, compared with approximately 48% on the non-dusty days preceding the dust events. Both PM10 and PM2.5 were enhanced during the dust events. However, PM1.0 was not enhanced during dust storms that originated within the state of Washington. During a dust storm that originated in Asia and impacted Spokane, PM1.0 was also enhanced, although the Asian dust reached Washington during a period of stagnation and poor dispersion, so that local sources were also contributing to high particulate levels. The "intermodal" region of PM, defined as particles ranging in aerodynamic size from 1.0 to 2.5 microns, was found to represent a significant fraction of PM2.5 (approximately 51%) during windblown dust events, compared with 28% during the non-dusty days before the dust events.


Subject(s)
Air Pollution/analysis , Desert Climate , Dust , Environmental Monitoring/standards , Models, Theoretical , Particle Size , Reproducibility of Results
2.
Environ Pollut ; 75(1): 89-96, 1992.
Article in English | MEDLINE | ID: mdl-15092054

ABSTRACT

The physical and chemical climatology of high elevation (> 1500 m) spruce-fir forests in the southern Appalachian mountains was studied by establishing a weather and atmospheric chemical observatory at Mt Mitchell State Park in North Carolina (35 degrees 44' 05" N, 82 degrees 17' 15"W). Data collected during the summer and autumn (May-October) of 1986, 1987, and 1988 are reported. All measurements were made on or near a 16.5 m walk-up tower extending 10 m above the forest canopy on Mt Gibbes (2006 m msl), which is located approximately 2 km SW of Mt Mitchell. The tower was equipped with standard meteorological instrumentation, a passive cloud water collector, and gas pollutant sensors for O3, SO2, NOx. The tower and nearby forest canopy were immersed in clouds 25 to 40% of the time. Non-precipitating clouds were very acidic (pH 2.5-4.5). Precipitating clouds were less acidic (pH 3.5-5.5). The dominant wind directions were WNW and ESE. Clouds from the most common wind direction (WNW) were more acidic (mean pH 3.5) than those from the next most common wind direction (ESE, mean pH 5.5). Cloud water acidity was related to the concentration of SO4(2-), and NO3- ions. Mean concentration of H+, NH4+, SO4(2-), and NO3- ions in the cloud water varied from 330-340, 150-200, 190-200 and 120-140 micromol litre(-1) respectively. The average and range of O3 were 50 (25-100) ppbv (109) in 1986, 51 (26-102) ppbv in 1987, and 66 (30-140) during the 1988 field seasons, respectively. The daily maximum, 1-h average, and 24-h average concentrations were all greatest during June through mid-August, suggesting a correlation with the seasonal temperature and solar intensity. Throughfall collectors near the tower were used to obtain a useful estimate of deposition to the forest canopy. Between 50-60% of the total deposition of SO4(2-) was due to cloud impact.

SELECTION OF CITATIONS
SEARCH DETAIL
...