Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Clin Epigenetics ; 16(1): 53, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589929

ABSTRACT

BACKGROUND: The study of biological age acceleration may help identify at-risk individuals and reduce the rising global burden of age-related diseases. Using DNA methylation (DNAm) clocks, we investigated biological aging in schizophrenia (SCZ), a mental illness that is associated with an increased prevalence of age-related disabilities and morbidities. In a whole blood DNAm sample of 1090 SCZ cases and 1206 controls across four European cohorts, we performed a meta-analysis of differential aging using three DNAm clocks (i.e., Hannum, Horvath, and Levine). To dissect how DNAm aging contributes to SCZ, we integrated information on duration of illness and SCZ polygenic risk, as well as stratified our analyses by chronological age and biological sex. RESULTS: We found that blood-based DNAm aging is significantly altered in SCZ independent from duration of the illness since onset. We observed sex-specific and nonlinear age effects that differed between clocks and point to possible distinct age windows of altered aging in SCZ. Most notably, intrinsic cellular age (Horvath clock) is decelerated in SCZ cases in young adulthood, while phenotypic age (Levine clock) is accelerated in later adulthood compared to controls. Accelerated phenotypic aging was most pronounced in women with SCZ carrying a high polygenic burden with an age acceleration of + 3.82 years (CI 2.02-5.61, P = 1.1E-03). Phenotypic aging and SCZ polygenic risk contributed additively to the illness and together explained up to 14.38% of the variance in disease status. CONCLUSIONS: Our study contributes to the growing body of evidence of altered DNAm aging in SCZ and points to intrinsic age deceleration in younger adulthood and phenotypic age acceleration in later adulthood in SCZ. Since increased phenotypic age is associated with increased risk of all-cause mortality, our findings indicate that specific and identifiable patient groups are at increased mortality risk as measured by the Levine clock. Our study did not find that DNAm aging could be explained by the duration of illness of patients, but we did observe age- and sex-specific effects that warrant further investigation. Finally, our results show that combining genetic and epigenetic predictors can improve predictions of disease outcomes and may help with disease management in schizophrenia.


Subject(s)
DNA Methylation , Schizophrenia , Adult , Female , Humans , Male , Young Adult , Aging/genetics , Cellular Senescence , Epigenesis, Genetic , Schizophrenia/genetics
2.
Schizophr Res ; 267: 8-13, 2024 May.
Article in English | MEDLINE | ID: mdl-38508027

ABSTRACT

Previous studies have demonstrated that the levels of IgG against neurotransmitter receptors are increased in patients with schizophrenia. Genome-wide association (GWA) studies of schizophrenia confirmed that 108 loci harbouring over 300 genes were associated with schizophrenia. Although the functional implications of genetic variants are unclear, theoretical functional alterations of these genes could be replicated by the presence of autoantibodies. This study examined the levels of plasma IgG antibodies against four neurotransmitter receptors, CHRM4, GRM3, CHRNA4 and CHRNA5, using an in-house ELISA in 247 patients with schizophrenia and 344 non-psychiatric controls. Four peptides were designed based on in silico analysis with computational prediction of HLA-DRB1 restricted and B-cell epitopes. The relationship between plasma IgG levels and psychiatric symptoms, as defined by the Operational Criteria Checklist for Psychotic Illness and Affective Illness (OPCRIT), were examined. The results showed that the levels of plasma IgG against peptides derived from CHRM4 and CHRNA4 were significantly increased in patients with schizophrenia compared with control subjects, but there was no significant association of plasma IgG levels with any symptom domain or any specific symptoms. These preliminary results suggest that CHRM4 and CHRNA4 may be novel targets for autoantibody responses in schizophrenia, although the pathogenic relationship between increased serum autoantibody levels and schizophrenia symptoms remains unclear.


Subject(s)
Autoantibodies , Immunoglobulin G , Receptors, Cholinergic , Schizophrenia , Humans , Schizophrenia/blood , Schizophrenia/immunology , Autoantibodies/blood , Female , Male , Adult , Middle Aged , Immunoglobulin G/blood , Receptors, Cholinergic/immunology , Enzyme-Linked Immunosorbent Assay
3.
Transl Psychiatry ; 14(1): 79, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320995

ABSTRACT

The brain neurotramsmitter dopamine may play an important role in modulating systemic glucose homeostasis. In seven hundred and four drug- naïve patients with first-episode schizophrenia, we provide robust evidence of positive associations between negative symptoms of schizophrenia and high fasting blood glucose. We then show that glucose metabolism and negative symptoms are improved when intermittent theta burst stimulation (iTBS) on prefrontal cortex (PFC) is performed in patients with predominantly negative symptoms of schizophrenia. These findings led us to hypothesize that the prefrontal cortical dopamine deficit, which is known to be associated with negative symptoms, may be responsible for abnormal glucose metabolism in schizophrenia. To explore this, we optogenetically and chemogenetically inhibited the ventral tegmental area (VTA)-medial prefrontal cortex (mPFC) dopamine projection in mice and found both procedures caused glucose intolerance. Moreover, microinjection of dopamine two receptor (D2R) neuron antagonists into mPFC in mice significantly impaired glucose tolerance. Finally, a transgenic mouse model of psychosis named Disc1tr exhibited depressive-like symptoms, impaired glucose homeostasis, and compared to wild type littermates reduced D2R expression in prefrontal cortex.


Subject(s)
Dopamine , Schizophrenia , Mice , Humans , Animals , Dopamine/metabolism , Schizophrenia/metabolism , Ventral Tegmental Area/metabolism , Mice, Transgenic , Prefrontal Cortex/metabolism , Glucose/metabolism , Nerve Tissue Proteins/metabolism
4.
Biol Rev Camb Philos Soc ; 98(4): 1424-1458, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37068798

ABSTRACT

The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aß, is now known to be an antimicrobial peptide, and Aß deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.


Subject(s)
Alzheimer Disease , Immunosenescence , Animals , Humans , Mice , Aged , Immunosenescence/physiology , Alzheimer Disease/genetics , Cell Self Renewal , Aging , Mammals , Hormones
5.
Brain Behav Immun Health ; 28: 100603, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36865984

ABSTRACT

Autoantibodies targeting the central nervous system have been shown to induce psychiatric symptoms resembling schizophrenia. Concurrently, genetic studies have characterised a number of risk variants associated with schizophrenia although their functional implications are largely unknown. Any biological effects of functional variants on protein function may potentially be replicated by the presence of autoantibodies against such proteins. Recent research has demonstrated that the R1346H variant in the CACNA1I gene coding for the Cav 3.3 protein results in a synaptic reduction of Cav3.3 voltage gated calcium channels and, consequently, sleep spindles, which have been shown to correlate with several symptom domains in patients with schizophrenia. The present study measured plasma levels of IgG against two peptides derived from CACNA1I and CACNA1C, respectively, in patients with schizophrenia and healthy controls. The results demonstrated that increased anti-CACNA1I IgG levels were associated with schizophrenia but not associated with any symptom domain related to the reduction of sleep spindles. In contrast to previously published work indicating that inflammation may be a marker for a depressive phenotype, plasma levels of IgG against either CACNA1I or CACNA1C peptides were not associated with depressive symptoms, suggesting that anti-Cav3.3 autoantibodies may function independently of pro-inflammatory processes.

6.
Soc Psychiatry Psychiatr Epidemiol ; 58(1): 105-112, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35648175

ABSTRACT

PURPOSE: Women diagnosed with non-affective psychosis have a lower general fertility rate (GFR) and age-specific fertility rate (ASFR) than women in the general population. Contemporary data on GFR in this group remain limited, despite substantive changes in prescribing and management. We calculated contemporary estimates of the GFR and ASFR for women diagnosed with non-affective psychosis compared with the general population of women without this diagnosis. METHODS: A population-based design combined routinely collected historical maternity and psychiatric data from two representative areas of Scotland. Women were included from the NHS Grampian or Greater Glasgow and Clyde areas and were aged 15-44 between 2005 and 2013 inclusive. The 'exposed' group had a diagnosis of non-affective psychosis (ICD-10 F20-F29) and was compared to the general population of 'unexposed' women in the same geographical areas. RESULTS: Annual GFR between 2005 and 2013 for women with non-affective psychosis varied from 9.6 to 21.3 live births/1000 women per year in the exposed cohort and 52.7 to 57.8 live births/1000 women per year in the unexposed cohort, a rate ratio (RR) of 0.28 [p < 0.001; 95% CI (0.24, 0.32)]. ASFR for all 5-year age groups was lower in the exposed cohort than amongst unexposed women. CONCLUSION: We highlight continued low fertility rates in women with a diagnosis of non-affective psychosis, despite widespread availability of prolactin-sparing atypical antipsychotics. Accurate estimation of fertility rates remains crucial in developing needs-matched perinatal care for these women. Methodological improvements using routine datasets to investigate perinatal mental health are also urgently needed.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Humans , Female , Pregnancy , Birth Rate , Antipsychotic Agents/therapeutic use , Psychotic Disorders/diagnosis , Psychotic Disorders/epidemiology , Psychotic Disorders/drug therapy , Scotland/epidemiology
7.
Schizophr Bull Open ; 3(1): sgac032, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35669867

ABSTRACT

Background and hypothesis: No objective tests are currently available to help diagnosis of major psychiatric disorders. This study evaluates the potential of eye movement behavior patterns to predict schizophrenia subjects compared to those with major affective disorders and control groups. Study design: Eye movements were recorded from a training set of UK subjects with schizophrenia (SCZ; n = 120), bipolar affective disorder (BPAD; n = 141), major depressive disorder (MDD; n = 136), and healthy controls (CON; n = 142), and from a hold-out set of 133 individuals with proportional group sizes. A German cohort of SCZ (n = 60) and a Scottish cohort of CON subjects (n = 184) acted as a second semi-independent test set. All patients met DSMIV and ICD10 criteria for SCZ, BPAD, and MDD. Data from 98 eye movement features were extracted. We employed a gradient boosted (GB) decision tree multiclass classifier to develop a predictive model. We calculated the area under the curve (AUC) as the primary performance metric. Study results: Estimates of AUC in one-versus-all comparisons were: SCZ (0.85), BPAD (0.78), MDD (0.76), and CON (0.85). Estimates on part-external validation were SCZ (0.89) and CON (0.65). In all cases, there was good specificity but only moderate sensitivity. The best individual discriminators included free viewing, fixation duration, and smooth pursuit tasks. The findings appear robust to potential confounders such as age, sex, medication, or mental state at the time of testing. Conclusions: Eye movement patterns can discriminate schizophrenia from major mood disorders and control subjects with around 80% predictive accuracy.

8.
Nat Genet ; 54(5): 541-547, 2022 05.
Article in English | MEDLINE | ID: mdl-35410376

ABSTRACT

We report results from the Bipolar Exome (BipEx) collaboration analysis of whole-exome sequencing of 13,933 patients with bipolar disorder (BD) matched with 14,422 controls. We find an excess of ultra-rare protein-truncating variants (PTVs) in patients with BD among genes under strong evolutionary constraint in both major BD subtypes. We find enrichment of ultra-rare PTVs within genes implicated from a recent schizophrenia exome meta-analysis (SCHEMA; 24,248 cases and 97,322 controls) and among binding targets of CHD8. Genes implicated from genome-wide association studies (GWASs) of BD, however, are not significantly enriched for ultra-rare PTVs. Combining gene-level results with SCHEMA, AKAP11 emerges as a definitive risk gene (odds ratio (OR) = 7.06, P = 2.83 × 10-9). At the protein level, AKAP-11 interacts with GSK3B, the hypothesized target of lithium, a primary treatment for BD. Our results lend support to BD's polygenicity, demonstrating a role for rare coding variation as a significant risk factor in BD etiology.


Subject(s)
Bipolar Disorder , Schizophrenia , A Kinase Anchor Proteins/genetics , Bipolar Disorder/genetics , Exome/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Schizophrenia/genetics , Exome Sequencing
9.
World J Biol Psychiatry ; 23(9): 689-702, 2022 11.
Article in English | MEDLINE | ID: mdl-35112653

ABSTRACT

OBJECTIVE: To find eye movement characteristics in patients with affective disorders. METHOD: The demographic and clinical evaluation data of patients with major depressive disorder (MDD), bipolar disorder (BPD), and healthy control (HC) were collected. EyeLink 1000 eye tracker was used to collect eye movement data. Chi-squared test and independent sample t-test were used for demographics and clinical characteristics. The Mann-Whitney U-test was used to compare the eye movement variables among four groups, and the FDR method was used for multiple comparison correction. Pearson correlation analysis was used to analyse the relationship between clinical symptoms and eye movement variables. RESULTS: Patients with affective disorders showed smaller saccade amplitude under free-viewing task, more fixations and saccades, shorter fixation duration, longer saccade duration under fixation stability and smooth pursuit tasks (all, p < 0.05) when compared to HC, but there was no significant difference in all eye movement variables among patients in the three groups. Also, all eye movement variables under the three paradigms had no significant correlation with clinical scale scores. CONCLUSION: Patients with major depression, bipolar depression and bipolar mania share similar eye movement dysfunction under free-viewing, fixation stability and smooth pursuit tasks.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Mania , Eye Movements , Mood Disorders
10.
JAMA Psychiatry ; 79(3): 260-269, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35019943

ABSTRACT

IMPORTANCE: About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. OBJECTIVE: To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. DESIGN, SETTING, AND PARTICIPANTS: Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10 501) and individuals with non-TRS (n = 20 325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). MAIN OUTCOMES AND MEASURES: GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. RESULTS: The study included a total of 85 490 participants (48 635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P = .001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P = .04). CONCLUSIONS AND RELEVANCE: In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance.


Subject(s)
Psychotic Disorders , Schizophrenia , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Male , Multifactorial Inheritance/genetics , Psychotic Disorders/drug therapy , Schizophrenia/diagnosis , Schizophrenia/drug therapy , Schizophrenia/genetics
11.
Biol Psychiatry ; 91(1): 102-117, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34099189

ABSTRACT

BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.


Subject(s)
Bipolar Disorder/genetics , Depressive Disorder, Major , Psychotic Disorders , Schizophrenia/genetics , Sex Characteristics , Depressive Disorder, Major/genetics , Endothelial Cells , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide , Psychotic Disorders/genetics , Receptors, Vascular Endothelial Growth Factor , Sulfurtransferases
12.
Transl Psychiatry ; 11(1): 412, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34341337

ABSTRACT

Epigenetic dysregulation is thought to contribute to the etiology of schizophrenia (SZ), but the cell type-specificity of DNA methylation makes population-based epigenetic studies of SZ challenging. To train an SZ case-control classifier based on DNA methylation in blood, therefore, we focused on human genomic regions of systemic interindividual epigenetic variation (CoRSIVs), a subset of which are represented on the Illumina Human Methylation 450K (HM450) array. HM450 DNA methylation data on whole blood of 414 SZ cases and 433 non-psychiatric controls were used as training data for a classification algorithm with built-in feature selection, sparse partial least squares discriminate analysis (SPLS-DA); application of SPLS-DA to HM450 data has not been previously reported. Using the first two SPLS-DA dimensions we calculated a "risk distance" to identify individuals with the highest probability of SZ. The model was then evaluated on an independent HM450 data set on 353 SZ cases and 322 non-psychiatric controls. Our CoRSIV-based model classified 303 individuals as cases with a positive predictive value (PPV) of 80%, far surpassing the performance of a model based on polygenic risk score (PRS). Importantly, risk distance (based on CoRSIV methylation) was not associated with medication use, arguing against reverse causality. Risk distance and PRS were positively correlated (Pearson r = 0.28, P = 1.28 × 10-12), and mediational analysis suggested that genetic effects on SZ are partially mediated by altered methylation at CoRSIVs. Our results indicate two innate dimensions of SZ risk: one based on genetic, and the other on systemic epigenetic variants.


Subject(s)
DNA Methylation , Schizophrenia , Case-Control Studies , Epigenesis, Genetic , Humans , Machine Learning , Schizophrenia/genetics
13.
Elife ; 102021 02 26.
Article in English | MEDLINE | ID: mdl-33646943

ABSTRACT

We performed a systematic analysis of blood DNA methylation profiles from 4483 participants from seven independent cohorts identifying differentially methylated positions (DMPs) associated with psychosis, schizophrenia, and treatment-resistant schizophrenia. Psychosis cases were characterized by significant differences in measures of blood cell proportions and elevated smoking exposure derived from the DNA methylation data, with the largest differences seen in treatment-resistant schizophrenia patients. We implemented a stringent pipeline to meta-analyze epigenome-wide association study (EWAS) results across datasets, identifying 95 DMPs associated with psychosis and 1048 DMPs associated with schizophrenia, with evidence of colocalization to regions nominated by genetic association studies of disease. Many schizophrenia-associated DNA methylation differences were only present in patients with treatment-resistant schizophrenia, potentially reflecting exposure to the atypical antipsychotic clozapine. Our results highlight how DNA methylation data can be leveraged to identify physiological (e.g., differential cell counts) and environmental (e.g., smoking) factors associated with psychosis and molecular biomarkers of treatment-resistant schizophrenia.


Subject(s)
DNA Methylation , Epigenome , Psychotic Disorders/physiopathology , Schizophrenia, Treatment-Resistant/physiopathology , Adult , Aged , England , Female , Humans , Ireland , Male , Middle Aged , Psychotic Disorders/genetics , Schizophrenia, Treatment-Resistant/genetics , Scotland , Sweden , Young Adult
14.
Sci Bull (Beijing) ; 66(10): 1037-1046, 2021 May 30.
Article in English | MEDLINE | ID: mdl-36654248

ABSTRACT

Much has been learned about the etiology and pathogenesis of schizophrenia since the term was first used by Eugene Bleuler over a century ago to describe one of the most important forms of major mental illness to affect mankind. Both nature and nurture feature prominently in our understanding of the genesis of the overall risk of developing schizophrenia. We now have a firm grasp of the broad structure of the genetic architecture and several key environmental risk factors have been identified and delineated. However, much of the heritability of schizophrenia remains unexplained and the reported environmental risk factors do not explain all the variances not attributable to genetic risk factors. The biggest problem at present is that our understanding of the causal mechanisms involved is still in its infancy. In this review, we describe the extent and limits of our knowledge of the specific genetic/constitutional and non-genetic/environmental factors that contribute to the overall risk of schizophrenia. We suggest novel methods may be required to understand the almost certainly immensely complex multi-level causal mechanisms that contribute to the generation of the schizophrenia phenotype.

15.
Genes Brain Behav ; 19(8): e12680, 2020 11.
Article in English | MEDLINE | ID: mdl-32515128

ABSTRACT

A diversity of bacteria, protozoans and viruses ("endozoites") were recently uncovered within healthy tissues including the human brain. By contrast, it was already recognized a century ago that healthy plants tissues contain abundant endogenous microbes ("endophytes"). Taking endophytes as an informative precedent, we overview the nature, prevalence, and role of endozoites in mammalian tissues, centrally focusing on the brain, concluding that endozoites are ubiquitous in diverse tissues. These passengers often remain subclinical, but they are not silent. We address their routes of entry, mechanisms of persistence, tissue specificity, and potential to cause long-term behavioral changes and/or immunosuppression in mammals, where rabies virus is the exemplar. We extend the discussion to Herpesviridae, Coronaviridae, and Toxoplasma, as well as to diverse bacteria and yeasts, and debate the advantages and disadvantages that endozoite infection might afford to the host and to the ecosystem. We provide a clinical perspective in which endozoites are implicated in neurodegenerative disease, anxiety/depression, and schizophrenia. We conclude that endozoites are instrumental in the delicate balance between health and disease, including age-related brain disease, and that endozoites have played an important role in the evolution of brain function and human behavior.


Subject(s)
Brain/physiology , Cognition , Microbiota , Animals , Brain/microbiology , Brain/parasitology , Brain/virology , Humans
16.
Front Cell Dev Biol ; 7: 287, 2019.
Article in English | MEDLINE | ID: mdl-31850339

ABSTRACT

The cilium of a cell translates varied extracellular cues into intracellular signals that control embryonic development and organ function. The dynamic maintenance of ciliary structure and function requires balanced bidirectional cargo transport involving intraflagellar transport (IFT) complexes. IFT172 is a member of the IFT complex B, and IFT172 mutation is associated with pathologies including short rib thoracic dysplasia, retinitis pigmentosa and Bardet-Biedl syndrome, but how it underpins these conditions is not clear. We used the WIM cell line, derived from embryonic fibroblasts of Wimple mice (carrying homozygous Leu1564Pro mutation in Ift172), to probe roles of Ift172 and primary cilia in cell behavior. WIM cells had ablated cilia and deficiencies in directed migration (electrotaxis), cell proliferation and intracellular signaling. Additionally, WIM cells displayed altered cell cycle progression, with increased numbers of chromatids, highlighting dysfunctional centrosome status. Exposure to a physiological electric field promoted a higher percentage of primary cilia in wild-type cells. Interestingly, in situ hybridization revealed an extensive and dynamic expression profile of Ift172 in both developing and adult mouse cortex. In vivo manipulation of Ift172 expression in germinal regions of embryonic mouse brains perturbed neural progenitor proliferation and radial migration of post-mitotic neurons, revealing a regulatory role of Ift172 in cerebral morphogenesis. Our data suggest that Ift172 regulates a range of fundamental biological processes, highlighting the pivotal roles of the primary cilium in cell physiology and brain development.

17.
Mol Psychiatry ; 24(2): 294-311, 2019 02.
Article in English | MEDLINE | ID: mdl-30401811

ABSTRACT

The molecular basis of how chromosome 16p13.11 microduplication leads to major psychiatric disorders is unknown. Here we have undertaken brain imaging of patients carrying microduplications in chromosome 16p13.11 and unaffected family controls, in parallel with iPS cell-derived cerebral organoid studies of the same patients. Patient MRI revealed reduced cortical volume, and corresponding iPSC studies showed neural precursor cell (NPC) proliferation abnormalities and reduced organoid size, with the NPCs therein displaying altered planes of cell division. Transcriptomic analyses of NPCs uncovered a deficit in the NFκB p65 pathway, confirmed by proteomics. Moreover, both pharmacological and genetic correction of this deficit rescued the proliferation abnormality. Thus, chromosome 16p13.11 microduplication disturbs the normal programme of NPC proliferation to reduce cortical thickness due to a correctable deficit in the NFκB signalling pathway. This is the first study demonstrating a biologically relevant, potentially ameliorable, signalling pathway underlying chromosome 16p13.11 microduplication syndrome in patient-derived neuronal precursor cells.


Subject(s)
Chromosomes, Human, Pair 16/genetics , Mental Disorders/genetics , NF-kappa B/metabolism , Abnormalities, Multiple/genetics , Adult , Aged , Brain/diagnostic imaging , Brain/physiopathology , Cell Proliferation , Chromosome Duplication/genetics , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Intellectual Disability/genetics , Male , Middle Aged , NF-kappa B/genetics , Neuroimaging/methods , Neurons , Organoids/physiology , Signal Transduction , Stem Cells/physiology
18.
Psychiatry Res ; 271: 325-327, 2019 01.
Article in English | MEDLINE | ID: mdl-30529314

ABSTRACT

It has been suggested that gluten consumption is linked to schizophrenia, with this link strengthened through the presence of circulating anti-native gliadin antibodies (AGAs). The human leukocyte antigen (HLA) system is crucial for antigen presentation and antibody secretion but no study has examined the relationship between HLA-II variants and circulating antibodies against gliadin peptides. In this study, HLA-II variants were genotyped in patients with schizophrenia and the relationship between these variants and plasma AGA levels was examined. Although there was no association found, HLA-AGA associations could potentially serve as a marker of gluten sensitivity in patients with schizophrenia.


Subject(s)
Antibodies/blood , Gliadin/immunology , HLA-DQ Antigens/blood , Schizophrenia/immunology , Adult , Biomarkers , Female , Humans , Male , Middle Aged , Schizophrenia/blood
19.
Curr Top Behav Neurosci ; 40: 13-43, 2018.
Article in English | MEDLINE | ID: mdl-30030769

ABSTRACT

The inception of human-induced pluripotent stem cell (hiPSCs) technology has provided an exciting platform upon which the modelling and treatment of human neurodevelopmental and neuropsychiatric disorders may be expedited. Although the genetic architecture of these disorders is far more complex than previously imagined, many key loci have at last been identified. This has allowed in vivo and in vitro technologies to be refined to model specific high-penetrant genetic loci involved in both disorders. Animal models of neurodevelopmental disorders, such as schizophrenia and autism spectrum disorders, show limitations in recapitulating the full complexity and heterogeneity of human neurodevelopmental disease states. Indeed, patient-derived hiPSCs offer distinct advantages over classical animal models in the study of human neuropathologies. Here we have discussed the current, relative translational merit of hiPSCs in investigating human neurodevelopmental and neuropsychiatric disorders with a specific emphasis on the utility of such systems to aid in the identification of biomarkers. We have highlighted the promises and pitfalls of reprogramming cell fate for the study of these disorders and provide recommendations for future directions in this field in order to overcome current limitations. Ultimately, this will aid in the development of effective clinical strategies for diverse patient populations affected by these disorders with the aim of also leading to biomarker identification.


Subject(s)
Induced Pluripotent Stem Cells , Neurobiology , Neurodevelopmental Disorders , Schizophrenia , Animals , Cell Differentiation , Humans , Neurodevelopmental Disorders/therapy , Schizophrenia/therapy
20.
Article in English | MEDLINE | ID: mdl-29352035

ABSTRACT

Solid progress has occurred over the last decade in our understanding of the molecular genetic basis of neurodevelopmental disorders, and of schizophrenia and autism in particular. Although the genetic architecture of both disorders is far more complex than previously imagined, many key loci have at last been identified. This has allowed in vivo and in vitro technologies to be refined to model specific high-penetrant genetic loci involved in both disorders. Using the DISC1/NDE1 and CYFIP1/EIF4E loci as exemplars, we explore the opportunities and challenges of using animal models and human-induced pluripotent stem cell technologies to further understand/treat and potentially reverse the worst consequences of these debilitating disorders.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.


Subject(s)
Autistic Disorder/genetics , Disease Models, Animal , Induced Pluripotent Stem Cells/physiology , Mutation , Schizophrenia/genetics , Animals , Animals, Genetically Modified , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...