Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(5): e0215674, 2019.
Article in English | MEDLINE | ID: mdl-31071119

ABSTRACT

To analyze on-water rowing performance, a valid determination of the power loss due to the generation of propulsion is required. This power los can be calculated as the dot product of the net water force vector ([Formula: see text]) and the time derivative of the position vector of the point at the blade where [Formula: see text] is applied ([Formula: see text]). In this article we presented a method that allows for accurate determination of both parameters using a closed system of three rotational equations of motion for three different locations at the oar. Additionally, the output of the method has been validated. An oar was instrumented with three pairs of strain gauges measuring local strain. Force was applied at different locations of the blade, while the oar was fixed at the oarlock and the end of the handle. Using a force transducer and kinematic registration, the force vector at the blade and the deflection of the oar were measured. These data were considered to be accurate and used to calibrate the measured strain for bending moments, the deflection of the oar and the angle of the blade relative to its unloaded position. Additionally, those data were used to validate the output values of the presented method plus the associated instantaneous power output. Good correspondence was found between the estimated perpendicular blade force and its reference (ICC = .999), while the parallel blade force could not be obtained (ICC = .000). The position of the PoA relative to the blade could be accurately obtained when the perpendicular force was ≥ 5.3 N (ICC = .927). Instantaneous power output values associated with the perpendicular force could be obtained with reasonable accuracy (ICC = .747). These results suggest that the power loss due to the perpendicular water force component can be accurately obtained, while an additional method is required to obtain the power losses due to the parallel force.


Subject(s)
Mechanical Phenomena , Sports Equipment , Water Sports , Calibration , Materials Testing , Stress, Mechanical
2.
J Biomech ; 41(12): 2628-32, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18657816

ABSTRACT

Gait research and clinical gait training may benefit from movement-dependent event control, that is, technical applications in which events such as obstacle appearance or visual/acoustic cueing are (co)determined online on the basis of current gait properties. A prerequisite for successful gait-dependent event control is accurate online detection of gait events such as foot contact (FC) and foot off (FO). The objective of the present study was to assess the feasibility of online FC and FO detection using a single large force platform embedded in a treadmill. Center-of-pressure, total force output and kinematic data were recorded simultaneously in 12 healthy participants. Online FC and FO estimates and spatial and temporal gait parameters estimated from the force platform data--i.e., center-of-pressure profiles--were compared to offline kinematic counterparts, which served as the gold standard. Good correspondence was achieved between online FC detections using center-of-pressure profiles and those derived offline from kinematic data, whereas FO was detected 31 ms too late. A good relative and absolute agreement was achieved for both spatial and temporal gait parameters, which was improved further by applying more fine-grained FO estimation procedures using characteristic local minima in the total force output time series. These positive results suggest that the proposed system for gait-dependent event control may be successfully implemented in gait research as well as gait interventions in clinical practice.


Subject(s)
Exercise Test/instrumentation , Gait/physiology , Locomotion/physiology , Manometry/instrumentation , Physical Examination/instrumentation , Transducers , Adult , Equipment Design , Equipment Failure Analysis , Female , Humans , Male , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...