Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21268077

ABSTRACT

On November 26, 2021, the World Health Organisation classified the B.1.1.529 SARS-CoV-2 variant as the Omicron variant of concern (VOC). Reports of higher transmissibility and potential immune evasion triggered flight bans and heightened health control measures across the world to stem its distribution. Wastewater-based surveillance has demonstrated to be a useful complement for community-based tracking of SARS-CoV-2 variants. Using design principles of our previous assays that detect VOCs (Alpha and Delta), here we report three allele-specific RT-qPCR assays that can quantitatively detect and discriminate the Omicron BA.1 and BA.2 variants in wastewater. The first assay targets the nine-nucleotide deletion at the L24-A27S of the spike protein for detection of BA.2. The second targets the six-nucleotide deletion at 69-70 of the spike protein for detection of the Omicron BA.1 variant, and the third targets the stretch of mutations from Q493R to Q498R for simultaneous detection of both Omicron BA.1 and BA.2. This method is open-sourced, can be implemented using commercially available RT-qPCR protocols, and would be an important tool for tracking the introduction and spread of the Omicron variants BA.1 and BA.2 in communities for informed public health responses.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21261298

ABSTRACT

The Delta (B.1.617.2) variant has caused major devastation in India and other countries around the world. First detected in October 2020, it has now spread to more than 100 countries, prompting WHO to declare it as a global variant of concern (VOC). The Delta (B.1.617.2), Delta plus (B.1.617.2.1) and Kappa (B.1.617.1) variants are all sub-lineages of the original B.1.617 variant. Prior to the inception of B.1.617, vaccine rollout, safe-distancing and timely lockdowns greatly reduced COVID-19 hospitalizations and deaths. However, the Delta variant, allegedly more infectious and for which existing vaccines seemed less effective, has catalyzed the resurgence of cases. Therefore, there is an imperative need for increased surveillance of the B.1.617 variants. While the Beta variant is increasingly outpaced by the Delta variant, the spread of the Beta variant remains of concern due to its vaccine resistance. Efforts have been made to utilize wastewater-based surveillance for community-based tracking of SARS-CoV-2 variants, however wastewater with its low SARS-CoV-2 viral titers and mixtures of viral variants, requires assays to be variant-specific yet accurately quantitative for meaningful interpretation. Following on the design principles of our previous assays for the Alpha variant, here we report allele-specific and multiplex-compatible RT-qPCR assays targeting mutations T19R, D80A, K417N, T478K and E484Q, for quantitative detection and discrimination of the Delta, Delta plus, Kappa and Beta variants in wastewater. This method is open-sourced and can be implemented using commercially available RT-qPCR protocols, and would be an important tool for tracking the spread of B.1.617 and the Beta variants in communities.

SELECTION OF CITATIONS
SEARCH DETAIL
...