Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Appl Opt ; 52(30): 7342-51, 2013 Oct 20.
Article in English | MEDLINE | ID: mdl-24216589

ABSTRACT

We present the experimental realization of a laser system for ground-to-satellite optical Doppler ranging at the atmospheric turbulence limit. Such a system needs to display good frequency stability (a few parts in 10-14) while allowing large and well-controlled frequency sweeps of ±12 GHz at rates exceeding 100 MHz/s. Furthermore it needs to be sufficiently compact and robust for transportation to different astronomical observation sites, where it is to be interfaced with satellite ranging telescopes. We demonstrate that our system fulfills those requirements and should therefore allow operation of ground to low Earth orbit satellite coherent optical links limited only by atmospheric turbulence.

2.
Article in English | MEDLINE | ID: mdl-22481772

ABSTRACT

We give an overview of the work done with the Laboratoire National de Métrologie et d'Essais-Systèmes de Référence Temps-Espace (LNE-SYRTE) fountain ensemble during the last five years. After a description of the clock ensemble, comprising three fountains, FO1, FO2, and FOM, and the newest developments, we review recent studies of several systematic frequency shifts. This includes the distributed cavity phase shift, which we evaluate for the FO1 and FOM fountains, applying the techniques of our recent work on FO2. We also report calculations of the microwave lensing frequency shift for the three fountains, review the status of the blackbody radiation shift, and summarize recent experimental work to control microwave leakage and spurious phase perturbations. We give current accuracy budgets. We also describe several applications in time and frequency metrology: fountain comparisons, calibrations of the international atomic time, secondary representation of the SI second based on the (87)Rb hyperfine frequency, absolute measurements of optical frequencies, tests of the T2L2 satellite laser link, and review fundamental physics applications of the LNE-SYRTE fountain ensemble. Finally, we give a summary of the tests of the PHARAO cold atom space clock performed using the FOM transportable fountain.

3.
Phys Rev Lett ; 106(13): 130801, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21517369

ABSTRACT

We demonstrate agreement between measurements and ab initio calculations of the frequency shifts caused by distributed cavity phase variations in the microwave cavity of a primary atomic fountain clock. Experimental verification of the finite element models of the cavities gives the first quantitative evaluation of this leading uncertainty and allows it to be reduced to δν/ν=±8.4×10(-17). Applying these experimental techniques to clocks with improved microwave cavities will yield negligible distributed cavity phase uncertainties, less than ±1×10(-17).

4.
Opt Lett ; 35(9): 1479-81, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20436609

ABSTRACT

We describe the realization of a 5 km free-space coherent optical link through the turbulent atmosphere between a telescope and a ground target. We present the phase noise of the link, limited mainly by atmospheric turbulence and mechanical vibrations of the telescope and the target. We discuss the implications of our results for applications, with particular emphasis on optical Doppler ranging to satellites and long-distance frequency transfer.

5.
Opt Express ; 18(4): 3284-97, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20389336

ABSTRACT

We report on a fiber-stabilized agile laser with ultra-low frequency noise. The frequency noise power spectral density is comparable to that of an ultra-stable cavity stabilized laser at Fourier frequencies higher than 30 Hz. When it is chirped at a constant rate of approximately 40 MHz/s, the max non-linearity frequency error is about 50 Hz peak-to-peak over more than 600 MHz tuning range. The Rayleigh backscattering is found to be a significant frequency noise source dependent on fiber length, chirping rate and the power imbalance of the interferometer arms. We analyze this effect both theoretically and experimentally and put forward techniques to reduce this noise contribution.


Subject(s)
Fiber Optic Technology/instrumentation , Lasers , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Linear Models
6.
Article in English | MEDLINE | ID: mdl-20211784

ABSTRACT

We report the operation of a dual Rb/Cs atomic fountain clock. (133)Cs and (87)Rb atoms are cooled, launched, and detected simultaneously in LNE-SYRTE's FO2 double fountain. The dual clock operation occurs with no degradation of either the stability or the accuracy. We describe the key features for achieving such a simultaneous operation. We also report on the results of the first Rb/Cs frequency measurement campaign performed with FO2 in this dual atom clock configuration, including a new determination of the absolute (87)Rb hyperfine frequency.

7.
Article in English | MEDLINE | ID: mdl-19574143

ABSTRACT

This paper focuses on the development of tools aiming to solve several problems related to the microwave interrogation signal in atomic fountains. We first consider the problem related to cycle synchronous phase transients caused by the sequential operation of the atomic fountain. To search for such systematic phase variations deeply buried in the microwave synthesizer phase noise, we have developed a novel triggered-phase transient analyzer capable of processing the microwave signal to extract the phase in a synchronous manner even in the presence of frequency modulation. With this device we check in vivo the LNE-SYRTE fountain's interrogation signals with a resolution approaching 1 microradian. In addition, using this device, we investigate an innovative approach to solve a second problem, namely, the shift caused by microwave leakage in the fountain. Our approach consists of switching off the fountain microwave interrogation signal when atoms are outside the microwave cavity. To do that, we have developed a switch that is almost free of phase transients and is thus able to eliminate the frequency shift caused by microwave leakage without inducing significant phase transients on the interrogation signal.

8.
Article in English | MEDLINE | ID: mdl-19251511

ABSTRACT

We investigated the influence of some critical parameters and operating conditions such as cell temperature, laser intensity, and interrogation technique affecting the performances of a gas cell Cs frequency standard based on coherent population trapping (CPT). Thanks to an original experimental setup, the atoms can be trapped in the dark state and interrogated using continuous wave (CW) or pulsed coherent optical radiations. Using a double-lambda scheme, a signal contrast as high as 52% has been measured in the continuous regime for an optimum cell temperature of 35 degrees C. Compared with the conventional continuous CPT interrogation, the pulsed interrogation technique reduces the light shift by a factor of 300 and allowed it to reach high-frequency stability for higher laser intensities. The frequency stability has been measured to be 9 x 10(-13) for a 1 s integration time. Main noise contributions limiting the short-term and medium-term frequency stability are reviewed and estimated.

9.
Article in English | MEDLINE | ID: mdl-17441582

ABSTRACT

In this paper we describe the improved redesign of the microwave frequency synthesizers for Laboratoire National d'Essais-Systèmes de Référence Temps-Espace (LNE-SYRTE) atomic fountains. The synthesizers use a cryogenic oscillator to generate both Cs and Rb hyperfine frequencies based on a new distribution frequency of 1 GHz. The main metrological features (phase noise, long-term phase stability, and spectral purity) of the synthesizers have been measured in situ connected to an atomic fountain and are compatible with an accuracy goal of 10(-16) for the atomic fountains. The simultaneous test of two different synthesizers on the FO2 atomic fountain at the 10(-16) level also is reported.


Subject(s)
Electronics , Microwaves , Oscillometry/instrumentation , Oscillometry/standards , Signal Processing, Computer-Assisted/instrumentation , Time Factors , Transducers , Equipment Design , Equipment Failure Analysis , France , Oscillometry/methods , Reference Standards
10.
Article in English | MEDLINE | ID: mdl-17186921

ABSTRACT

Cryogenic sapphire oscillators (CSO) developed at the University of Western Australia (UWA) have now been in operation around the world continuously for many years. Such oscillators, due to their excellent spectral purity are essential for interrogating atomic frequency standards at the limit of quantum projection noise; otherwise aliasing effects will dominate the frequency stability due to the periodic sampling between successive interrogations of the atomic transition. Other applications, which have attracted attention in recent years, include tests on fundamental principles of physics, such as tests of Lorentz invariance. This paper reports on the long-term operation and performance of such oscillators. We compare the long-term drift of some different CSOs. The drift rates turn out to be linear over many years and in the same direction. However, the magnitude seems to vary by more than one order of magnitude between the oscillators, ranging from 10(14) per day to a few parts in 10(13) per day.


Subject(s)
Aluminum Oxide , Cold Temperature , Electrochemistry/instrumentation , Electronics/instrumentation , Equipment Design , Equipment Failure Analysis
11.
Phys Rev Lett ; 96(6): 060801, 2006 Feb 17.
Article in English | MEDLINE | ID: mdl-16605978

ABSTRACT

We report on a new experiment that tests for a violation of Lorentz invariance (LI), by searching for a dependence of atomic transition frequencies on the orientation of the spin of the involved states (Hughes-Drever type experiment). The atomic frequencies are measured using a laser cooled 133Cs atomic fountain clock, operating on a particular combination of Zeeman substates. We analyze the results within the framework of the Lorentz violating standard model extension (SME), where our experiment is sensitive to a largely unexplored region of the SME parameter space, corresponding to first measurements of four proton parameters and improvements by 11 and 13 orders of magnitude on the determination of four others. In spite of the attained uncertainties, and of having extended the search into a new region of the SME, we still find no indication of LI violation.

12.
Article in English | MEDLINE | ID: mdl-14682624

ABSTRACT

We report a theoretical dynamical analysis on effect of semiconductor laser phase noise on the achievable linewidth when locked to a Fabry-Pérot cavity fringe using a modulation-demodulation frequency stabilization technique such as the commonly used Pound-Drever-Hall frequency locking scheme. We show that, in the optical domain, the modulation-demodulation operation produces, in the presence of semiconductor laser phase noise, two kinds of excess noise, which could be much above the shot noise limit, namely, conversion noise (PM-to-AM) and intermodulation noise. We show that, in typical stabilization conditions, the ultimate semiconductor laser linewidth reduction can be severely limited by the intermodulation excess noise. The modulation-demodulation operation produces the undesirable nonlinear intermodulation effect through which the phase noise spectral components of the semiconductor laser, in the vicinity of even multiples of the modulation frequency, are downconverted into the bandpass of the frequency control loop. This adds a spurious signal, at the modulation frequency, to the error signal and limits the performance of the locked semiconductor laser. This effect, reported initially in the microwave domain using the quasistatic approximation, can be considerably reduced by a convenient choice of the modulation frequency.

13.
Phys Rev Lett ; 90(6): 060402, 2003 Feb 14.
Article in English | MEDLINE | ID: mdl-12633279

ABSTRACT

The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are compared to set new constraints on a possible violation of Lorentz invariance. We determine the variation of the oscillator frequency as a function of its orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike test) with respect to a preferred frame candidate. We constrain the corresponding parameters of the Mansouri and Sexl test theory to delta-beta + 1/2 = (1.5+/-4.2) x 10(-9) and beta-alpha - 1= (-3.1+/-6.9) x 10(-7) which is of the same order as the best previous result for the former and represents a 30-fold improvement for the latter.

SELECTION OF CITATIONS
SEARCH DETAIL
...