Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(4): 1742-1750, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38197428

ABSTRACT

Phosphorene nanoribbons (PNRs) can be synthesised in intrinsically scalable methods from intercalation of black phosphorus (BP), however, the mechanism of ribbonisation remains unclear. Herein, to investigate the point at which nanoribbons form, we decouple the two key synthesis steps: first, the formation of the BP intercalation compound, and second, the dissolution into a polar aprotic solvent. We find that both the lithium intercalant and the negative charge on the phosphorus host framework can be effectively removed by addition of phenyl cyanide to return BP and investigate whether fracturing to ribbons occurred after the first step. Further efforts to exfoliate mechanically with or without solvent reveal that the intercalation step does not form ribbons, indicating that an interaction between the amidic solvent and the intercalated phosphorus compound plays an important role in the formation of nanoribbons.

2.
Phys Chem Chem Phys ; 25(37): 25157-25165, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37712384

ABSTRACT

The structure of pure liquid thiophene is revealed by using a combination of total neutron scattering experiments with isotopic substitution and molecular simulations via the next generation empirical potential refinement software, Dissolve. In the liquid, thiophene presents three principle local structural motifs within the first solvation shell, in plane and out of the plane of the thiophene ring. Firstly, above/below the ring plane thiophenes present a single H towards the π cloud, due to a combination of electrostatic and dispersion interactions. Secondly, around the ring plane, perpendicular thiophene molecules find 5 preferred sites driven by bifurcated C-H⋯S interactions, showing that hydrogen-sulfur bonding prevails over the charge asymmetry created by the heteroatom. Finally, parallel thiophenes sit above and below the ring, excluded from directly above the ring center and above the sulfur.

3.
Nat Commun ; 14(1): 5900, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37736749

ABSTRACT

Weak hydrogen bonds, such as O-H···π and C-H···O, are thought to direct biochemical assembly, molecular recognition, and chemical selectivity but are seldom observed in solution. We have used neutron diffraction combined with H/D isotopic substitution to obtain a detailed spatial and orientational picture of the structure of benzene-methanol mixtures. Our analysis reveals that methanol fully solvates and surrounds each benzene molecule. The expected O-H···π interaction is highly localised and directional, with the methanol hydroxyl bond aligned normal to the aromatic plane and the hydrogen at a distance of 2.30 Å from the ring centroid. Simultaneously, the tendency of methanol to form chain and cyclic motifs in the bulk liquid is manifest in a highly templated solvation structure in the plane of the ring. The methanol molecules surround the benzene so that the O-H bonds are coplanar with the aromatic ring while the oxygens interact with C-H groups through simultaneous bifurcated hydrogen bonds. This demonstrates that weak hydrogen bonding can modulate existing stronger interactions to give rise to highly ordered cooperative structural motifs that persist in the liquid phase.

4.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220337, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37691462

ABSTRACT

The crystalline graphitic carbon nitride, poly-triazine imide (PTI) is highly unusual among layered materials since it is spontaneously soluble in aprotic, polar solvents including dimethylformamide (DMF). The PTI material consists of layers of carbon nitride intercalated with LiBr. When dissolved, the resulting solutions consist of dissolved, luminescent single to multilayer nanosheets of around 60-125 nm in diameter and Li+ and Br- ions originating from the intercalating salt. To understand this unique solubility, the structure of these solutions has been investigated by high-energy X-ray and neutron diffraction. Although the diffraction patterns are dominated by inter-solvent correlations there are clear differences between the X-ray diffraction data of the PTI solution and the solvent in the 4-6 Å-1 range, with real space differences persisting to at least 10 Å. Structural modelling using both neutron and X-ray datasets as a constraint reveal the formation of distinct, dense solvation shells surrounding the nanoparticles with a layer of Br-close to the PTI-solvent interface. This solvent ordering provides a configuration that is energetically favourable underpinning thermodynamically driven PTI dissolution. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

5.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220339, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37691463

ABSTRACT

Crystalline two-dimensional carbon nitrides with polytriazine imide (PTI) structure are shown to act amphoterically, buffering both HCl and NaOH aqueous solutions, resulting in charged PTI layers that dissolve spontaneously in their aqueous media, particularly for the alkaline solutions. This provides a low energy, green route to their scalable solution processing. Protonation in acid is shown to occur at pyridinic nitrogens, stabilized by adjacent triazines, whereas deprotonation in base occurs primarily at basal plane NH bridges, although NH2 edge deprotonation is competitive. We conclude that mildly acidic or basic pHs are necessary to provide sufficient net charge on the nanosheets to promote dissolution, while avoiding high ion concentrations which screen the repulsion of like-charged PTI sheets in solution. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

6.
J Am Chem Soc ; 145(33): 18286-18295, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37551934

ABSTRACT

Quasi-1D nanoribbons provide a unique route to diversifying the properties of their parent 2D nanomaterial, introducing lateral quantum confinement and an abundance of edge sites. Here, a new family of nanomaterials is opened with the creation of arsenic-phosphorus alloy nanoribbons (AsPNRs). By ionically etching the layered crystal black arsenic-phosphorus using lithium electride followed by dissolution in amidic solvents, solutions of AsPNRs are formed. The ribbons are typically few-layered, several micrometers long with widths tens of nanometers across, and both highly flexible and crystalline. The AsPNRs are highly electrically conducting above 130 K due to their small band gap (ca. 0.035 eV), paramagnetic in nature, and have high hole mobilities, as measured with the first generation of AsP devices, directly highlighting their properties and utility in electronic devices such as near-infrared detectors, quantum computing, and charge carrier layers in solar cells.

7.
Chemistry ; 29(55): e202301232, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37435907

ABSTRACT

Black phosphorene quantum dots (BPQDs) are most commonly derived from high-cost black phosphorus, while previous syntheses from the low-cost red phosphorus (Pred ) allotrope are highly oxidised. Herein, we present an intrinsically scalable method to produce high quality BPQDs, by first ball-milling Pred to create nanocrystalline Pblack and subsequent reductive etching using lithium electride solvated in liquid ammonia. The resultant ~25 nm BPQDs are crystalline with low oxygen content, and spontaneously soluble as individualized monolayers in tertiary amide solvents, as directly imaged by liquid-phase transmission electron microscopy. This new method presents a scalable route to producing quantities of high quality BPQDs for academic and industrial applications.

8.
J Phys Chem B ; 127(6): 1357-1366, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36752593

ABSTRACT

The structures of equimolar mixtures of the commonly used polar aprotic solvents dimethylformamide (DMF) and dimethylacetamide (DMAc) in dimethyl sulfoxide (DMSO) have been investigated via neutron diffraction augmented by extensive hydrogen/deuterium isotopic substitution. Detailed 3-dimensional structural models of these solutions have been derived from the neutron data via Empirical Potential Structure Refinement (EPSR). The intermolecular center-of-mass (CoM) distributions show that the first coordination shell of the amides comprises ∼13-14 neighbors, of which approximately half are DMSO. In spite of this near ideal coordination shell mixing, the changes to the amide-amide structure are found to be relatively subtle when compared to the pure liquids. Analysis of specific intermolecular atom-atom correlations allows quantitative interpretation of the competition between weak interactions in the solution. We find a hierarchy of formic and methyl C-H···O hydrogen bonds forms the dominant local motifs, with peak positions in the range of 2.5-3.0 Å. We also observe a rich variety of steric and dispersion interactions, including those involving the O═C-N amide π-backbones. This detailed insight into the structural landscape of these important liquids demonstrates the versatility of DMSO as a solvent and the remarkable sensitivity of neutron diffraction, which is critical for understanding weak intermolecular interactions at the nanoscale and thereby tailoring solvent properties to specific applications.

9.
Chempluschem ; 88(1): e202200411, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36646521

ABSTRACT

Precursor design is the crucial step in tailoring the deposition profile towards a multitude of functional materials. Most commercially available aluminium oxide precursors require high processing temperatures (>500 °C). Herein, we report the tuning of the decomposition profile (200-350 °C) of a range of octahedrally coordinated tris(ß-ketoiminate) aluminium complexes of the type [Al(MeCN(R)CHC=OMe)3 ], by varying the R substituents in the ligands. The complexes are derived from the reaction of trimethylamine alane (TMAA) and a series of N-substituted ß-ketoiminate ligands (R-acnacH, R=Me, Et, i Pr, Ph) with varying R-substituents sizes. When the more sterically encumbered ligand (R=Mes) was used, the Al atom became five-coordinate, therefore representing the threshold to octahedral coordination around the metal in these type of compounds, which, consequently, lead to a change of decomposition profile. The resulting compounds have been characterised by NMR spectroscopy, mass spectrometry, elemental analysis and single crystal X-ray diffraction. [Al(MeCN(Me)CHC=OMe)3 ] has been used as a single source precursor for the deposition of Al2 O3 . Thin films were deposited via aerosol assisted chemical vapour deposition (AACVD), with toluene as the solvent, and were analysed using SEM, EDX and XPS.

10.
J Mater Chem A Mater ; 10(37): 20121-20127, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36277421

ABSTRACT

Graphene-related materials are promising supports for electrocatalysts due to their stability and high surface area. Their innate surface chemistries can be controlled and tuned via functionalisation to improve the stability of both the carbon support and the metal catalyst. Functionalised graphenes were prepared using either aryl diazonium functionalisation or non-destructive chemical reduction, to provide groups adapted for platinum deposition. XPS and TGA-MS measurements confirmed the presence of polyethyleneglycol and sulfur-containing functional groups, and provided consistent values for the extent of the reactions. The deposited platinum nanoparticles obtained were consistently around 2 nm via reductive chemistry and around 4 nm via the diazonium route. Although these graphene-supported electrocatalysts provided a lower electrochemical surface area (ECSA), functionalised samples showed enhanced specific activity compared to a commercial platinum/carbon black system. Accelerated stress testing (AST) showed improved durability for the functionalised graphenes compared to the non-functionalised materials, attributed to edge passivation and catalyst particle anchoring.

11.
Nat Mater ; 21(5): 555-563, 2022 05.
Article in English | MEDLINE | ID: mdl-35301475

ABSTRACT

Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH- ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100-103 ps) to disentangle the water, polymer relaxation and OH- diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications.


Subject(s)
Polymers , Water , Anions , Ion Exchange , Ions , Membranes, Artificial , Polymers/chemistry , Water/chemistry
12.
Adv Mater ; 34(15): e2106826, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35064954

ABSTRACT

The combination of strain and electrostatic engineering in epitaxial heterostructures of ferroelectric oxides offers many possibilities for inducing new phases, complex polar topologies, and enhanced electrical properties. However, the dominant effect of substrate clamping can also limit the electromechanical response and often leaves electrostatics to play a secondary role. Releasing the mechanical constraint imposed by the substrate can not only dramatically alter the balance between elastic and electrostatic forces, enabling them to compete on par with each other, but also activates new mechanical degrees of freedom, such as the macroscopic curvature of the heterostructure. In this work, an electrostatically driven transition from a predominantly out-of-plane polarized to an in-plane polarized state is observed when a PbTiO3 /SrTiO3 superlattice with a SrRuO3 bottom electrode is released from its substrate. In turn, this polarization rotation modifies the lattice parameter mismatch between the superlattice and the thin SrRuO3 layer, causing the heterostructure to curl up into microtubes. Through a combination of synchrotron-based scanning X-ray diffraction imaging, Raman scattering, piezoresponse force microscopy, and scanning transmission electron microscopy, the crystalline structure and domain patterns of the curved superlattices are investigated, revealing a strong anisotropy in the domain structure and a complex mechanism for strain accommodation.

13.
ACS Appl Mater Interfaces ; 13(51): 61215-61226, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34905920

ABSTRACT

Two-dimensional (2D) materials are promising components for defect passivation of metal halide perovskites. Unfortunately, commonly used polydisperse liquid-exfoliated 2D materials generally suffer from heterogeneous structures and properties while incorporated into perovskite films. We introduce monodisperse multifunctional 2D crystalline carbon nitride, poly(triazine imide) (PTI), as an effective defect passivation agent in perovskite films via typical solution processing. Incorporation of PTI into perovskite film can be readily attained by simple solution mixing of PTI dispersions with perovskite precursor solutions, resulting in the highly selective distribution of PTI localized at the defective crystal grain boundaries and layer interfaces in the functional perovskite layer. Several chemical, optical, and electronic characterizations, in conjunction with density functional theory calculations, reveal multiple beneficial roles from PTI: passivation of undercoordinated organic cations at the surface of perovskite crystal, suppression of ion migration by blocking diffusion channels, and prevention of hole quenching at perovskite/SnO2 interfaces. Consequently, a noticeably improved power conversion efficiency is achieved in perovskite solar cells, accompanied with promoted stability under humid air and thermal stress. Our strategy highlights the potential of judiciously designed 2D materials as a simple-to-implement material for various optoelectronic devices, including solar cells, based on hybrid perovskites.

14.
J Am Chem Soc ; 143(51): 21549-21559, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34919382

ABSTRACT

Phosphorene nanoribbons (PNRs) have been widely predicted to exhibit a range of superlative functional properties; however, because they have only recently been isolated, these properties are yet to be shown to translate to improved performance in any application. PNRs show particular promise for optoelectronics, given their predicted high exciton binding energies, tunable bandgaps, and ultrahigh hole mobilities. Here, we verify the theorized enhanced hole mobility in both solar cells and space-charge-limited-current devices, demonstrating the potential for PNRs improving hole extraction in universal optoelectronic applications. Specifically, PNRs are demonstrated to act as an effective charge-selective interlayer by enhancing hole extraction from polycrystalline methylammonium lead iodide (MAPbI3) perovskite to the poly(triarylamine) semiconductor. Introducing PNRs at the hole-transport/MAPbI3 interface achieves fill factors above 0.83 and efficiencies exceeding 21% for planar p-i-n (inverted) perovskite solar cells (PSCs). Such efficiencies are typically only reported for single-crystalline MAPbI3-based inverted PSCs. Methylammonium-free PSCs also benefit from a PNR interlayer, verifying applicability to architectures incorporating mixed perovskite absorber layers. Device photoluminescence and transient absorption spectroscopy are used to demonstrate that the presence of the PNRs drives more effective carrier extraction. Isolation of the PNRs in space-charge-limited-current hole-only devices improves both hole mobility and conductivity, demonstrating applicability beyond PSCs. This work provides primary experimental evidence that the predicted superlative functional properties of PNRs indeed translate to improved optoelectronic performance.

15.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34684971

ABSTRACT

Polymer electrolyte fuel cells hold great promise for a range of applications but require advances in durability for widespread commercial uptake. Corrosion of the carbon support is one of the main degradation pathways; hence, corrosion-resilient graphene has been widely suggested as an alternative to traditional carbon black. However, the performance of bulk graphene-based electrodes is typically lower than that of commercial carbon black due to their stacking effects. This article reports a simple, scalable and non-destructive method through which the pore structure and platinum utilisation of graphene-based membrane electrode assemblies can be significantly improved. Urea is incorporated into the catalyst ink before deposition, and is then simply removed from the catalyst layer after spraying by submerging the electrode in water. This additive hinders graphene restacking and increases porosity, resulting in a significant increase in Pt utilisation and current density. This technique does not require harsh template etching and it represents a pathway to significantly improve graphene-based electrodes by introducing hierarchical porosity using scalable liquid processes.

16.
ACS Appl Mater Interfaces ; 13(19): 23030-23037, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33949847

ABSTRACT

Light-fueled actuators are promising in many fields due to their contactless, easily controllable, and eco-efficiency features. However, their application in liquid environments is complicated by the existing challenges of rapid deformation in liquids, light absorption of the liquid media, and environmental contamination. Here, we design a photothermal pneumatic floating robot (PPFR) using a boat-paddle structure. Light energy is converted into thermal energy of air by an isolated photothermal composite, which is then converted into mechanical energy of liquid to drive the movement of PPFRs. By understanding and controlling the photothermal actuation, the PPFR can achieve an average velocity of 13.1 mm s-1 in water and can be modified for remote on-demand differential steering and self-sustained oscillation. The PPFR may be modified to provide a lifting mechanism, capable of moving 4 times the PPFR mass. Various shapes and materials are suitable for the PPFR, providing a platform for liquid surface transporting, water sampling, pollutant collecting, underwater photography, and photocontrol robots in shallow water.

17.
J Phys Condens Matter ; 33(26)2021 May 28.
Article in English | MEDLINE | ID: mdl-33906172

ABSTRACT

Design and implementation of advanced membrane formulations for selective transport of ions and molecular species are critical for creating the next generations of fuel cells and separation devices. It is necessary to understand the detailed transport mechanisms over time- and length-scales relevant to the device operation, both in laboratory models and in working systems under realistic operational conditions. Neutron scattering techniques including quasi-elastic neutron scattering, reflectivity and imaging are implemented at beamline stations at reactor and spallation source facilities worldwide. With the advent of new and improved instrument design, detector methodology, source characteristics and data analysis protocols, these neutron scattering techniques are emerging as a primary tool for research to design, evaluate and implement advanced membrane technologies for fuel cell and separation devices. Here we describe these techniques and their development and implementation at the ILL reactor source (Institut Laue-Langevin, Grenoble, France) and ISIS Neutron and Muon Spallation source (Harwell Science and Technology Campus, UK) as examples. We also mention similar developments under way at other facilities worldwide, and describe approaches such as combining optical with neutron Raman scattering and x-ray absorption with neutron imaging and tomography, and carrying out such experiments in specialised fuel cells designed to mimic as closely possible actualoperandoconditions. These experiments and research projects will play a key role in enabling and testing new membrane formulations for efficient and sustainable energy production/conversion and separations technologies.

18.
Chem Commun (Camb) ; 57(33): 4043-4046, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33885678

ABSTRACT

Rapid, selective detection of biological analytes is necessary for early diagnosis, but is often complicated by the analytes being bound to proteins and the lack of fast and reliable systems available for their direct assessment. Here, a cheap, easily-assembled molecularly imprinted silica/graphene oxide hybrid is developed, which can selectively detect toxins linked to early-stage chronic kidney disease, down to femtomolar concentrations within 5 minutes. The hybrid material is capable of simultaneously and separately measuring free and bound analytes using with an ultra-low limit of detection in the femtomolar range, and uses processes intrinsically adaptable to any charged molecular analyte.


Subject(s)
Caffeine/analysis , Creatinine/analysis , Graphite/chemistry , Indoles/analysis , Nanoparticles/chemistry , Renal Insufficiency, Chronic/diagnosis , Silicon Dioxide/chemistry , Biosensing Techniques , Chitosan/chemistry , Electrochemical Techniques , Electrodes , Humans , Limit of Detection , Molecular Imprinting , Surface Properties
19.
Nat Commun ; 12(1): 396, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452251

ABSTRACT

High torsional strength fibers are of practical interest for applications such as artificial muscles, electric generators, and actuators. Herein, we maximize torsional strength by understanding, measuring, and overcoming rheological thresholds of nanocarbon (nanotube/graphene oxide) dopes. The formed fibers show enhanced structure across multiple length scales, modified hierarchy, and improved mechanical properties. In particular, the torsional properties were examined, with high shear strength (914 MPa) attributed to nanotubes but magnified by their structure, intercalating graphene sheets. This design approach has the potential to realize the hierarchical dimensional hybrids, and may also be useful to build the effective network structure of heterogeneous materials.

20.
Sci Adv ; 6(39)2020 Sep.
Article in English | MEDLINE | ID: mdl-32978165

ABSTRACT

Designing next-generation fuel cell and filtration devices requires the development of nanoporous materials that allow rapid and reversible uptake and directed transport of water molecules. Here, we combine neutron spectroscopy and first-principles calculations to demonstrate rapid transport of molecular H2O through nanometer-sized voids ordered within the layers of crystalline carbon nitride with a polytriazine imide structure. The transport mechanism involves a sequence of molecular orientation reversals directed by hydrogen-bonding interactions as the neutral molecules traverse the interlayer gap and pass through the intralayer voids that show similarities with the transport of water through transmembrane aquaporin channels in biological systems. The results suggest that nanoporous layered carbon nitrides can be useful for developing high-performance membranes.

SELECTION OF CITATIONS
SEARCH DETAIL
...