Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 33(17): 7368-83, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23616543

ABSTRACT

A general model of neural development is derived to fit 18 mammalian species, including humans, macaques, several rodent species, and six metatherian (marsupial) mammals. The goal of this work is to describe heterochronic changes in brain evolution within its basic developmental allometry, and provide an empirical basis to recognize equivalent maturational states across animals. The empirical data generating the model comprises 271 developmental events, including measures of initial neurogenesis, axon extension, establishment, and refinement of connectivity, as well as later events such as myelin formation, growth of brain volume, and early behavioral milestones, to the third year of human postnatal life. The progress of neural events across species is sufficiently predictable that a single model can be used to predict the timing of all events in all species, with a correlation of modeled values to empirical data of 0.9929. Each species' rate of progress through the event scale, described by a regression equation predicting duration of development in days, is highly correlated with adult brain size. Neural heterochrony can be seen in selective delay of retinogenesis in the cat, associated with greater numbers of rods in its retina, and delay of corticogenesis in all species but rodents and the rabbit, associated with relatively larger cortices in species with delay. Unexpectedly, precocial mammals (those unusually mature at birth) delay the onset of first neurogenesis but then progress rapidly through remaining developmental events.


Subject(s)
Biological Evolution , Models, Neurological , Neurogenesis/physiology , Animals , Brain/cytology , Brain/growth & development , Cats , Cricetinae , Ferrets , Gerbillinae , Guinea Pigs , Humans , Macaca , Macropodidae , Mice , Rabbits , Rats , Sheep , Species Specificity , Trichosurus
2.
PLoS One ; 6(1): e16113, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-21264302

ABSTRACT

The developmental mechanisms by which the network organization of the adult cortex is established are incompletely understood. Here we report on empirical data on the development of connections in hamster isocortex and use these data to parameterize a network model of early cortical connectivity. Using anterograde tracers at a series of postnatal ages, we investigate the growth of connections in the early cortical sheet and systematically map initial axon extension from sites in anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general rule, developing axons extend from all sites to cover relatively large portions of the cortical field that include multiple cortical areas. From all sites, outgrowth is anisotropic, covering a greater distance along the medial/lateral axis than along the anterior/posterior axis. These observations are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical sheet. Our network model consists of nodes, representing parcels of cortex, embedded in 2-dimensional space. Network nodes are connected via directed edges, representing axons, drawn according to the empirically derived anisotropic probability distribution. The networks generated are described by a number of graph theoretic measurements including graph efficiency, node betweenness centrality and average shortest path length. To determine if connectional anisotropy helps reduce the total volume occupied by axons, we define and measure a simple metric for the extra volume required by axons crossing. We investigate the impact of different levels of anisotropy on network structure and volume. The empirically observed level of anisotropy suggests a good trade-off between volume reduction and maintenance of both network efficiency and robustness. Future work will test the model's predictions for connectivity in larger cortices to gain insight into how the regulation of axonal outgrowth may have evolved to achieve efficient and economical connectivity in larger brains.


Subject(s)
Axons/ultrastructure , Cerebral Cortex/anatomy & histology , Models, Neurological , Neural Pathways/ultrastructure , Animals , Anisotropy , Cricetinae , Probability Theory
3.
Neuroinformatics ; 8(3): 201-5, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20824390

ABSTRACT

Understanding relationships between the sequence and timing of brain developmental events across a given set of mammalian species can provide information about both neural development and evolution. Yet neurodevelopmental event timing data available from the published literature are incomplete, particularly for humans. Experimental documentation of unknown event timings requires considerable effort that can be expensive, time consuming, and for humans, often impossible. Application of suitable statistical models for translating neurodevelopmental event timings across mammalian species is essential. The present study implements an established statistical model and related functions as an open-source R package (ttime, translating time). The model incorporated into ttime allows predictions of unknown neurodevelopmental timings and explorations of phylogenetic relationships. The open-source package will enable transparency and reproducibility while minimizing redundancy. Sustainability and widespread dissemination will be guaranteed by the active CRAN (Comprehensive R Archive Network) community. The package updates the web-service (Clancy et al. 2007b) www.translatingtime.net by permitting predictions based on curated event timing databases which may include species not yet incorporated in the current model. The R package can be integrated into complex workflows that use the event predictions in their analyses. The package ttime is publicly available and can be downloaded from http://cran.r-project.org/web/packages/ttime/index.html .


Subject(s)
Anatomy, Comparative/methods , Brain/growth & development , Data Interpretation, Statistical , Neuroanatomy/methods , Software/standards , Animals , Brain/anatomy & histology , Developmental Biology/methods , Developmental Biology/trends , Humans , Models, Statistical , Phylogeny , Species Specificity , Time Factors
5.
Front Neuroanat ; 3: 20, 2009.
Article in English | MEDLINE | ID: mdl-19936319

ABSTRACT

Cortical GABAergic (gamma-aminobutyric acidergic) neurons include a recently identified subset whose projections extend over relatively long distances in adult rodents and primates. A number of these inhibitory projection neurons are located in and above the conventionally identified white matter, suggesting their persistence from, or a correspondence with, the developmental subplate. GABAergic and subplate neurons share some unique properties unlike those of the more prevalent pyramidal neurons. To better understand the GABAergic and subplate populations, we constructed a database of neural developmental events common to the three species most frequently used in experimental studies: rat, mouse, and macaque, using data from the online database www.translatingtime.net as well as GABAergic and subplate developmental data from the empirical literature. We used a general linear model to test for similarities and differences, a valid approach because the sequence of most neurodevelopmental events is remarkably conserved across mammalian species. Similarities between the two rodent populations are striking, permitting us to identify developmental dates for GABAergic and subplate neural events in rats that were previously identified only in mice, as well as the timing in mouse development for events previously identified in rats. Primate comparative data are also compelling, although slight variability in statistical error measurement indicates differences in primate GABAergic and subplate events when compared to rodents. Although human extrapolations are challenging because fewer empirical data points are available, and because human data display more variability, we also produce estimates of dates for GABAergic and subplate neural events that have not yet been, or cannot be, determined empirically in humans.

6.
Neuroinformatics ; 6(2): 71-9, 2008.
Article in English | MEDLINE | ID: mdl-18498062

ABSTRACT

Statistical properties such as distribution and correlation signatures were investigated using a temporal database of common neurodevelopmental events in the three species most frequently used in experimental studies, rat, mouse, and macaque. There was a fine nexus between phylogenetic proximity and empirically derived dates of the occurrences of 40 common events including the neurogenesis of cortical layers and outgrowth milestones of developing axonal projections. Exponential and power-law approximations to the distribution of the events reveal strikingly similar decay patterns in rats and mice when compared to macaques. Subsequent hierarchical clustering of the common event timings also captures phylogenetic proximity, an association further supported by multivariate linear regression data. These preliminary results suggest that statistical analyses of the timing of developmental milestones may offer a novel measure of phylogenetic classifications. This may have added pragmatic value in the specific support it offers for the reliability of rat/mouse comparative modeling, as well as in the broader implications for the potential of meta-analyses using databases assembled from the extensive empirical literature.


Subject(s)
Brain/embryology , Computational Biology/methods , Phylogeny , Primates/embryology , Rodentia/embryology , Animals , Brain/physiology , Cell Differentiation/physiology , Data Interpretation, Statistical , Databases, Factual , Linear Models , Macaca mulatta , Mice , Models, Statistical , Primates/physiology , Rats , Rodentia/physiology , Species Specificity
7.
Semin Perinatol ; 31(5): 275-82, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17905181

ABSTRACT

Pain in the developing fetus is controversial because of the difficulty in measuring and interpreting pain during gestation. It has received increased attention lately because of recently introduced legislation that would require consideration of fetal pain during intentional termination of pregnancy. During development, sensory fibers are abundant by 20 weeks; a functional spinal reflex is present by 19 weeks; connections to the thalamus are present by 20 weeks; and connections to subplate neurons are present by 17 weeks with intensive differentiation by 25 weeks. These cells are important developmentally, but decline as a result of natural apoptosis. Mature thalamocortical projections are not present until 29 to 30 weeks, which has led many to believe the fetus does not experience emotional "pain" until then. Pain requires both nociception and emotional reaction or interpretation. Nociception causes physiologic stress, which in turn causes increases in catecholamines, cortisol, and other stress hormones. Physiological stress is different from the emotional pain felt by the more mature fetus or infant, and this stress is mitigated by pain medication such as opiates. The plasticity of the developing brain makes it vulnerable to the stressors that cause long-term developmental changes, ultimately leading to adverse neurological outcomes. Whereas evidence for conscious pain perception is indirect, evidence for the subconscious incorporation of pain into neurological development and plasticity is incontrovertible. Scientific data, not religious or political conviction, should guide the desperately needed research in this field. In the meantime, it seems prudent to avoid pain during gestation.


Subject(s)
Fetal Development/physiology , Hypothalamo-Hypophyseal System/embryology , Pain/physiopathology , Pituitary-Adrenal System/embryology , Abortion, Induced/adverse effects , Autonomic Nervous System/embryology , Emotions , Fetus/physiology , Humans , Stress, Physiological
8.
Neuroinformatics ; 5(1): 79-94, 2007.
Article in English | MEDLINE | ID: mdl-17426354

ABSTRACT

Biomedical researchers and medical professionals are regularly required to compare a vast quantity of neurodevelopmental literature obtained from an assortment of mammals whose brains grow at diverse rates, including fast developing experimental rodent species and slower developing humans. In this article, we introduce a database-driven website, which was created to address this problem using statistical-based algorithms to integrate hundreds of empirically derived developing neural events in 10 mammalian species (http://translatingtime.net/). The site, based on a statistical model that has evolved over the past decade, currently incorporates 102 different neurodevelopmental events obtained from 10 species: hamsters, mice, rats, rabbits, spiny mice, guinea pigs, ferrets, cats, rhesus monkeys, and humans. Data are arranged in a Structured Query Language database, which allows comparative brain development measured in postconception days to be converted and accessed in real time, using Hypertext Preprocessor language. Algorithms applied to the database also allow predictions for dates of specific neurodevelopmental events where empirical data are not available, including for the human embryo and fetus. By designing a web-based portal, we seek to make these comparative data readily available to all those who need to efficiently estimate the timing of neurodevelopmental events in the human fetus, laboratory species, or across several different species. In an effort to further refine and expand the applicability of this database, we include a mechanism to submit additional data.


Subject(s)
Biological Evolution , Brain , Computational Biology/methods , Database Management Systems , Information Storage and Retrieval , Models, Animal , Algorithms , Animals , Brain/growth & development , Brain/metabolism , Brain/physiology , Humans
9.
Neurotoxicology ; 28(5): 931-7, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17368774

ABSTRACT

To better understand the neurotoxic effects of diverse hazards on the developing human nervous system, researchers and clinicians rely on data collected from a number of model species that develop and mature at varying rates. We review the methods commonly used to extrapolate the timing of brain development from experimental mammalian species to humans, including morphological comparisons, "rules of thumb" and "event-based" analyses. Most are unavoidably limited in range or detail, many are necessarily restricted to rat/human comparisons, and few can identify brain regions that develop at different rates. We suggest this issue is best addressed using "neuroinformatics", an analysis that combines neuroscience, evolutionary science, statistical modeling and computer science. A current use of this approach relates numeric values assigned to 10 mammalian species and hundreds of empirically derived developing neural events, including specific evolutionary advances in primates. The result is an accessible, online resource (http://www.translatingtime.net/) that can be used to equate dates in the neurodevelopmental literature across laboratory species to humans, predict neurodevelopmental events for which data are lacking in humans, and help to develop clinically relevant experimental models.


Subject(s)
Brain/growth & development , Animals , Biological Evolution , Humans , Informatics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...