Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(13): 8929-8950, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37314941

ABSTRACT

An unmet medical need remains for patients suffering from dry eye disease (DED). A fast-acting, better-tolerated noncorticosteroid anti-inflammatory eye drop could improve patient outcomes and quality of life. Herein, we describe a small-molecule drug discovery effort to identify novel, potent, and water-soluble JAK inhibitors as immunomodulating agents for topical ocular disposition. A focused library of known 3-(4-(2-(arylamino)pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitriles was evaluated as a molecular starting point. Structure-activity relationships (SARs) revealed a ligand-efficient (LE) JAK inhibitor series, amenable to aqueous solubility. Subsequent in vitro analysis indicated the potential for off-target toxicity. A KINOMEscan selectivity profile of 5 substantiated the likelihood of widespread series affinity across the human kinome. An sp2-to-sp3 drug design strategy was undertaken to attenuate off-target kinase activity while driving JAK-STAT potency and aqueous solubility. Tactics to reduce aromatic character, increase fraction sp3 (Fsp3), and bolster molecular complexity led to the azetidin-3-amino bridging scaffold in 31.


Subject(s)
Janus Kinase Inhibitors , Humans , Janus Kinase 1 , Janus Kinase 2 , Janus Kinase 3 , Janus Kinase Inhibitors/pharmacology , Janus Kinases , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Solubility
2.
Bioorg Med Chem Lett ; 19(4): 1177-82, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19138846

ABSTRACT

Key binding interactions of the anthranilimide based glycogen phosphorylase a (GPa) inhibitor 2 from X-ray crystallography studies are described. This series of compounds bind to the AMP site of GP. Using the binding information the core and the phenyl urea moieties were optimized. This work culminated in the identification of compounds with single nanomolar potency as well as in vivo efficacy in a diabetic model.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glycogen Phosphorylase/antagonists & inhibitors , Hypoglycemic Agents/chemical synthesis , ortho-Aminobenzoates/chemical synthesis , ortho-Aminobenzoates/pharmacology , Animals , Blood Glucose/analysis , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Disease Models, Animal , Hypoglycemic Agents/blood , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Mice , Molecular Conformation , Molecular Structure , Structure-Activity Relationship , Urea/pharmacology , ortho-Aminobenzoates/blood , ortho-Aminobenzoates/chemistry
5.
Bioorg Med Chem Lett ; 18(14): 4068-71, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18554908

ABSTRACT

A series of amino acid anthranilamide derivatives identified from a high-throughput screening campaign as novel, potent, and glucose-sensitive inhibitors of human liver glycogen phosphorylase a are described. A solid-phase synthesis using Wang resin was also developed which provided efficient access to a variety of analogues, and resulted in the identification of key structure-activity relationships, and the discovery of a potent exemplar (IC(50)=80 nM). The SAR scope, synthetic strategy, and in vitro results for this series are presented herein.


Subject(s)
Glycogen Phosphorylase, Liver Form/antagonists & inhibitors , ortho-Aminobenzoates/chemistry , Amino Acids/chemistry , Animals , Chemistry, Pharmaceutical/methods , Drug Design , Glycogen Phosphorylase, Liver Form/chemistry , Humans , Inhibitory Concentration 50 , Liver/enzymology , Microsomes, Liver/enzymology , Models, Chemical , Rats , Structure-Activity Relationship , Urea/chemistry , ortho-Aminobenzoates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...