Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Front Mol Neurosci ; 17: 1371145, 2024.
Article in English | MEDLINE | ID: mdl-38571813

ABSTRACT

The prevailing model behind synapse development and specificity is that a multitude of adhesion molecules engage in transsynaptic interactions to induce pre- and postsynaptic assembly. How these extracellular interactions translate into intracellular signal transduction for synaptic assembly remains unclear. Here, we focus on a synapse organizing complex formed by immunoglobulin superfamily member 21 (IgSF21) and neurexin2α (Nrxn2α) that regulates GABAergic synapse development in the mouse brain. We reveal that the interaction between presynaptic Nrxn2α and postsynaptic IgSF21 is a high-affinity receptor-ligand interaction and identify a binding interface in the IgSF21-Nrxn2α complex. Despite being expressed in both dendritic and somatic regions, IgSF21 preferentially regulates dendritic GABAergic presynaptic differentiation whereas another canonical Nrxn ligand, neuroligin2 (Nlgn2), primarily regulates perisomatic presynaptic differentiation. To explore mechanisms that could underlie this compartment specificity, we targeted multiple signaling pathways pharmacologically while monitoring the synaptogenic activity of IgSF21 and Nlgn2. Interestingly, both IgSF21 and Nlgn2 require c-jun N-terminal kinase (JNK)-mediated signaling, whereas Nlgn2, but not IgSF21, additionally requires CaMKII and Src kinase activity. JNK inhibition diminished de novo presynaptic differentiation without affecting the maintenance of formed synapses. We further found that Nrxn2α knockout brains exhibit altered synaptic JNK activity in a sex-specific fashion, suggesting functional linkage between Nrxns and JNK. Thus, our study elucidates the structural and functional relationship of IgSF21 with Nrxn2α and distinct signaling pathways for IgSF21-Nrxn2α and Nlgn2-Nrxn synaptic organizing complexes in vitro. We therefore propose a revised hypothesis that Nrxns act as molecular hubs to specify synaptic properties not only through their multiple extracellular ligands but also through distinct intracellular signaling pathways of these ligands.

2.
Article in English | MEDLINE | ID: mdl-38521860

ABSTRACT

Meta-analysis of genome-wide association study data has implicated PDE4B in the pathogenesis of Alzheimer's disease (AD), the leading cause of senile dementia. PDE4B encodes one of four subtypes of cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase-4 (PDE4A-D). To interrogate the involvement of PDE4B in the manifestation of AD-related phenotypes, the effects of a hypomorphic mutation (Pde4bY358C) that decreases PDE4B's cAMP hydrolytic activity were evaluated in the AppNL-G-F knock-in mouse model of AD using the Barnes maze test of spatial memory, 14C-2-deoxyglucose autoradiography, thioflavin-S staining of ß-amyloid (Aß) plaques, and inflammatory marker assay and transcriptomic analysis (RNA sequencing) of cerebral cortical tissue. At 12 months of age, AppNL-G-F mice exhibited spatial memory and brain metabolism deficits, which were prevented by the hypomorphic PDE4B in AppNL-G-F/Pde4bY358C mice, without a decrease in Aß plaque burden. RNA sequencing revealed that, among the 531 transcripts differentially expressed in AppNL-G-F versus wild-type mice, only 13 transcripts from four genes - Ide, Btaf1, Padi2, and C1qb - were differentially expressed in AppNL-G-F/Pde4bY358C versus AppNL-G-F mice, identifying their potential involvement in the protective effect of hypomorphic PDE4B. Our data demonstrate that spatial memory and cerebral glucose metabolism deficits exhibited by 12-month-old AppNL-G-F mice are prevented by targeted inhibition of PDE4B. To our knowledge, this is the first demonstration of a protective effect of PDE4B subtype-specific inhibition in a preclinical model of AD. It thus identifies PDE4B as a key regulator of disease manifestation in the AppNL-G-F model and a promising therapeutic target for AD.

3.
Psychol Med ; 53(7): 3178-3186, 2023 May.
Article in English | MEDLINE | ID: mdl-35125130

ABSTRACT

BACKGROUND: Schizophrenia endophenotypes may help elucidate functional effects of genetic risk variants in multiply affected consanguineous families that segregate recessive risk alleles of large effect size. We studied the association between a schizophrenia risk locus involving a 6.1Mb homozygous region on chromosome 13q22-31 in a consanguineous multiplex family and cognitive functioning, haemodynamic response and white matter integrity using neuroimaging. METHODS: We performed CANTAB neuropsychological testing on four affected family members (all homozygous for the risk locus), ten unaffected family members (seven homozygous and three heterozygous) and ten healthy volunteers, and tested neuronal responses on fMRI during an n-back working memory task, and white matter integrity on diffusion tensor imaging (DTI) on four affected and six unaffected family members (four homozygous and two heterozygous) and three healthy volunteers. For cognitive comparisons we used a linear mixed model (Kruskal-Wallis) test, followed by posthoc Dunn's pairwise tests with a Bonferroni adjustment. For fMRI analysis, we counted voxels exceeding the p < 0.05 corrected threshold. DTI analysis was observational. RESULTS: Family members with schizophrenia and unaffected family members homozygous for the risk haplotype showed attention (p < 0.01) and working memory deficits (p < 0.01) compared with healthy controls; a neural activation laterality bias towards the right prefrontal cortex (voxels reaching p < 0.05, corrected) and observed lower fractional anisotropy in the anterior cingulate cortex and left dorsolateral prefrontal cortex. CONCLUSIONS: In this family, homozygosity at the 13q risk locus was associated with impaired cognition, white matter integrity, and altered laterality of neural activation.

4.
Dis Model Mech ; 15(11)2022 11 01.
Article in English | MEDLINE | ID: mdl-36441105

ABSTRACT

Schizophrenia is a serious mental illness affecting 0.7% of the world's population. Despite over 50 years of schizophrenia drug identification and development, there have been no fundamental advances in the treatment of schizophrenia since the 1980s. Complex genetic aetiology and elusive pathomechanisms have made it difficult for researchers to develop models that sufficiently reflect pathophysiology to support effective drug discovery. However, recent large-scale, well-powered genomic studies have identified risk genes that represent tractable entry points to decipher disease mechanisms in heterogeneous patient populations and develop targeted treatments. Replicating schizophrenia-associated gene variants in mouse models is an important strategy to start understanding their pathogenicity and role in disease biology. Furthermore, longitudinal studies in a wide range of genetic mouse models from early postnatal life are required to assess the progression of this disease through developmental stages to improve early diagnostic strategies and enable preventative measures. By expanding and refining our approach to schizophrenia research, we can improve prevention strategies and treatment of this debilitating disease.


Subject(s)
Schizophrenia , Mice , Animals , Humans , Schizophrenia/genetics , Disease Models, Animal , Genomics , Drug Discovery , Research Personnel
5.
Biol Psychiatry ; 92(4): 323-334, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35227461

ABSTRACT

BACKGROUND: The discovery of coding variants in genes that confer risk of intellectual disability (ID) is an important step toward understanding the pathophysiology of this common developmental disability. METHODS: Homozygosity mapping, whole-exome sequencing, and cosegregation analyses were used to identify gene variants responsible for syndromic ID with autistic features in two independent consanguineous families from the Arabian Peninsula. For in vivo functional studies of the implicated gene's function in cognition, Drosophila melanogaster and mice with targeted interference of the orthologous gene were used. Behavioral, electrophysiological, and structural magnetic resonance imaging analyses were conducted for phenotypic testing. RESULTS: Homozygous premature termination codons in PDZD8, encoding an endoplasmic reticulum-anchored lipid transfer protein, showed cosegregation with syndromic ID in both families. Drosophila melanogaster with knockdown of the PDZD8 ortholog exhibited impaired long-term courtship-based memory. Mice homozygous for a premature termination codon in Pdzd8 exhibited brain structural, hippocampal spatial memory, and synaptic plasticity deficits. CONCLUSIONS: These data demonstrate the involvement of homozygous loss-of-function mutations in PDZD8 in a neurodevelopmental cognitive disorder. Model organisms with manipulation of the orthologous gene replicate aspects of the human phenotype and suggest plausible pathophysiological mechanisms centered on disrupted brain development and synaptic function. These findings are thus consistent with accruing evidence that synaptic defects are a common denominator of ID and other neurodevelopmental conditions.


Subject(s)
Cognitive Dysfunction , Intellectual Disability , Adaptor Proteins, Signal Transducing/genetics , Animals , Cognitive Dysfunction/genetics , Consanguinity , Drosophila , Drosophila melanogaster , Humans , Intellectual Disability/genetics , Mice , Mutation/genetics
6.
Autism Res ; 15(4): 614-627, 2022 04.
Article in English | MEDLINE | ID: mdl-35142069

ABSTRACT

2p16.3 deletion, involving NEUREXIN1 (NRXN1) heterozygous deletion, substantially increases the risk of developing autism and other neurodevelopmental disorders. We have a poor understanding of how NRXN1 heterozygosity impacts on brain function and cognition to increase the risk of developing the disorder. Here we characterize the impact of Nrxn1α heterozygosity on cerebral metabolism, in mice, using 14 C-2-deoxyglucose imaging. We also assess performance in an olfactory-based discrimination and reversal learning (OB-DaRL) task and locomotor activity. We use decision tree classifiers to test the predictive relationship between cerebral metabolism and Nrxn1α genotype. Our data show that Nrxn1α heterozygosity induces prefrontal cortex (medial prelimbic cortex, mPrL) hypometabolism and a contrasting dorsal raphé nucleus (DRN) hypermetabolism. Metabolism in these regions allows for the predictive classification of Nrxn1α genotype. Consistent with reduced mPrL glucose utilization, prefrontal cortex insulin receptor signaling is decreased in Nrxn1α+/- mice. Behaviorally, Nrxn1α+/- mice show enhanced learning of a novel discrimination, impaired reversal learning and an increased latency to make correct choices. In addition, male Nrxn1α+/- mice show hyperlocomotor activity. Correlative analysis suggests that mPrL hypometabolism contributes to the enhanced novel odor discrimination seen in Nrxn1α+/- mice, while DRN hypermetabolism contributes to their increased latency in making correct choices. The data show that Nrxn1α heterozygosity impacts on prefrontal cortex and serotonin system function, which contribute to the cognitive alterations seen in these animals. The data suggest that Nrxn1α+/- mice provide a translational model for the cognitive and behavioral alterations seen in autism and other neurodevelopmental disorders associated with 2p16.3 deletion. LAY SUMMARY: Deletion of the chromosomal region 2p16.3, involving reduced NEUREXIN1 gene expression, dramatically increases the risk of developing autism. Here, we show that reduced Neurexin1α expression, in mice, impacts on the prefrontal cortex and impairs cognitive flexibility. The data suggest that 2p16.3 deletion increases the risk of developing autism by impacting on the prefrontal cortex. Mice with the deletion are a useful model for testing new drugs to treat the cognitive flexibility problems experienced by people with autism.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Autism Spectrum Disorder/genetics , Disease Models, Animal , Dorsal Raphe Nucleus , Genotype , Humans , Male , Mice , Prefrontal Cortex/diagnostic imaging , Reversal Learning
7.
Dis Model Mech ; 14(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34612482

ABSTRACT

Within the past 20 years, particularly with the advent of exome sequencing technologies, autosomal dominant and de novo mutations in the gene encoding the neurone-specific α3 subunit of the Na+,K+-ATPase (NKA α3) pump, ATP1A3, have been identified as the cause of a phenotypic continuum of rare neurological disorders. These allelic disorders of ATP1A3 include (in approximate order of severity/disability and onset in childhood development): polymicrogyria; alternating hemiplegia of childhood; cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss syndrome; relapsing encephalopathy with cerebellar ataxia; and rapid-onset dystonia-parkinsonism. Some patients present intermediate, atypical or combined phenotypes. As these disorders are currently difficult to treat, there is an unmet need for more effective therapies. The molecular mechanisms through which mutations in ATP1A3 result in a broad range of neurological symptoms are poorly understood. However, in vivo comparative studies using genetically altered model organisms can provide insight into the biological consequences of the disease-causing mutations in NKA α3. Herein, we review the existing mouse, zebrafish, Drosophila and Caenorhabditis elegans models used to study ATP1A3-related disorders, and discuss their potential contribution towards the understanding of disease mechanisms and development of novel therapeutics.


Subject(s)
Disease Models, Animal , Nervous System Diseases/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Animals , Animals, Genetically Modified , Humans , Mutation , Sodium-Potassium-Exchanging ATPase/metabolism
8.
Trends Pharmacol Sci ; 42(8): 700-713, 2021 08.
Article in English | MEDLINE | ID: mdl-34074526

ABSTRACT

Gain-of-function (GOF) pathogenic variants of KCNT1, the gene encoding the largest known potassium channel subunit, KNa1.1, are associated with developmental and epileptic encephalopathies accompanied by severe psychomotor and intellectual disabilities. Blocking hyperexcitable KNa1.1 channels with quinidine, a class I antiarrhythmic drug, has shown variable success in patients in part because of dose-limiting off-target effects, poor blood-brain barrier (BBB) penetration, and low potency. In recent years, high-resolution cryogenic electron microscopy (cryo-EM) structures of the chicken KNa1.1 channel in different activation states have been determined, and animal models of the diseases have been generated. Alongside increasing information about the functional effects of GOF pathogenic variants on KNa1.1 channel behaviour and how they lead to hyperexcitability, these tools will facilitate the development of more effective treatment strategies. We review the range of KCNT1 variants and their functional effects, the challenges posed by current treatment strategies, and recent advances in finding more potent and selective therapeutic interventions for KCNT1-related epilepsies.


Subject(s)
Epilepsy , Nerve Tissue Proteins , Animals , Epilepsy/drug therapy , Epilepsy/genetics , Humans , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Potassium Channels, Sodium-Activated , Quinidine
9.
Schizophr Bull ; 47(3): 796-802, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33159203

ABSTRACT

We report a consanguineous family in which schizophrenia segregates in a manner consistent with recessive inheritance of a rare, partial-penetrance susceptibility allele. From 4 marriages between 2 sets of siblings who are half first cousins, 6 offspring have diagnoses of psychotic disorder. Homozygosity mapping revealed a 6.1-Mb homozygous region on chromosome 13q22.2-31.1 shared by all affected individuals, containing 13 protein-coding genes. Microsatellite analysis confirmed homozygosity for the affected haplotype in 12 further apparently unaffected members of the family. Psychiatric reports suggested an endophenotype of milder psychiatric illness in 4 of these individuals. Exome and genome sequencing revealed no potentially pathogenic coding or structural variants within the risk haplotype. Filtering for noncoding variants with a minor allele frequency of <0.05 identified 17 variants predicted to have significant effects, the 2 most significant being within or adjacent to the SCEL gene. RNA sequencing of blood from an affected homozygote showed the upregulation of transcription from NDFIP2 and SCEL. NDFIP2 is highly expressed in brain, unlike SCEL, and is involved in determining T helper (Th) cell type 1 and Th2 phenotypes, which have previously been implicated with schizophrenia.


Subject(s)
Chromosomes, Human, Pair 13/genetics , Consanguinity , Genes, Recessive/genetics , Genetic Predisposition to Disease/genetics , Psychotic Disorders/genetics , Schizophrenia/genetics , Endophenotypes , Female , Genetic Loci , Humans , Male , Pedigree , Psychotic Disorders/physiopathology , Schizophrenia/physiopathology
10.
Cereb Cortex ; 30(4): 2358-2371, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31812984

ABSTRACT

2p16.3 deletions, involving heterozygous NEUREXIN1 (NRXN1) deletion, dramatically increase the risk of developing neurodevelopmental disorders, including autism and schizophrenia. We have little understanding of how NRXN1 heterozygosity increases the risk of developing these disorders, particularly in terms of the impact on brain and neurotransmitter system function and brain network connectivity. Thus, here we characterize cerebral metabolism and functional brain network connectivity in Nrxn1α heterozygous mice (Nrxn1α+/- mice), and assess the impact of ketamine and dextro-amphetamine on cerebral metabolism in these animals. We show that heterozygous Nrxn1α deletion alters cerebral metabolism in neural systems implicated in autism and schizophrenia including the thalamus, mesolimbic system, and select cortical regions. Nrxn1α heterozygosity also reduces the efficiency of functional brain networks, through lost thalamic "rich club" and prefrontal cortex (PFC) hub connectivity and through reduced thalamic-PFC and thalamic "rich club" regional interconnectivity. Subanesthetic ketamine administration normalizes the thalamic hypermetabolism and partially normalizes thalamic disconnectivity present in Nrxn1α+/- mice, while cerebral metabolic responses to dextro-amphetamine are unaltered. The data provide new insight into the systems-level impact of heterozygous Nrxn1α deletion and how this increases the risk of developing neurodevelopmental disorders. The data also suggest that the thalamic dysfunction induced by heterozygous Nrxn1α deletion may be NMDA receptor-dependent.


Subject(s)
Calcium-Binding Proteins/genetics , Ketamine/administration & dosage , Neural Cell Adhesion Molecules/genetics , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/genetics , Prefrontal Cortex/diagnostic imaging , Thalamus/diagnostic imaging , Animals , Disease Models, Animal , Gene Deletion , Injections, Intraperitoneal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Net/diagnostic imaging , Nerve Net/drug effects , Neurodevelopmental Disorders/drug therapy , Prefrontal Cortex/drug effects , Thalamus/drug effects
11.
Mol Autism ; 10: 8, 2019.
Article in English | MEDLINE | ID: mdl-30858964

ABSTRACT

Background: Of the many genetic mutations known to increase the risk of autism spectrum disorder, a large proportion cluster upon synaptic proteins. One such family of presynaptic proteins are the neurexins (NRXN), and recent genetic and mouse evidence has suggested a causative role for NRXN2 in generating altered social behaviours. Autism has been conceptualised as a disorder of atypical connectivity, yet how single-gene mutations affect such connectivity remains under-explored. To attempt to address this, we have developed a quantitative analysis of microstructure and structural connectivity leveraging diffusion tensor MRI (DTI) with high-resolution 3D imaging in optically cleared (CLARITY) brain tissue in the same mouse, applied here to the Nrxn2α knockout (KO) model. Methods: Fixed brains of Nrxn2α KO mice underwent DTI using 9.4 T MRI, and diffusion properties of socially relevant brain regions were quantified. The same tissue was then subjected to CLARITY to immunolabel axons and cell bodies, which were also quantified. Results: DTI revealed increases in fractional anisotropy in the amygdala (including the basolateral nuclei), the anterior cingulate cortex, the orbitofrontal cortex and the hippocampus. Axial diffusivity of the anterior cingulate cortex and orbitofrontal cortex was significantly increased in Nrxn2α KO mice, as were tracts between the amygdala and the orbitofrontal cortex. Using CLARITY, we find significantly altered axonal orientation in the amygdala, orbitofrontal cortex and the anterior cingulate cortex, which was unrelated to cell density. Conclusions: Our findings demonstrate that deleting a single neurexin gene (Nrxn2α) induces atypical structural connectivity within socially relevant brain regions. More generally, our combined within-subject DTI and CLARITY approach presents a new, more sensitive method of revealing hitherto undetectable differences in the autistic brain.


Subject(s)
Autism Spectrum Disorder/genetics , Brain/diagnostic imaging , Nerve Tissue Proteins/genetics , Animals , Autism Spectrum Disorder/diagnostic imaging , Diffusion Tensor Imaging , Gene Deletion , Imaging, Three-Dimensional , Male , Mice , Mice, Inbred C57BL
12.
Eur J Med Genet ; 62(12): 103592, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30476627

ABSTRACT

Hearing loss is a debilitating disorder that impairs language acquisition, resulting in disability in children and potential isolation in adulthood. Its onset can have a genetic basis, though environmental factors, which are often preventable, can also cause the condition. The genetic forms are highly heterogeneous, and early detection is necessary to arrange appropriate patient support. Here we report the molecular basis of hereditary hearing loss in a consanguineous family with multiple affected members from Oman. Combining homozygosity mapping with whole exome sequencing identified a novel homozygous nucleotide substitution c.575T > C in the lipoma HMGIC fusion partner-like 5 gene (LHFPL5), that converted the 192nd amino acid residue in the protein from a leucine to a proline, p.(Leu192Pro). Sanger sequencing confirmed segregation with the disease phenotype as expected for a recessive condition and the variant was absent in 123,490 subjects from various disease-specific and population genetic studies as well as 150 unrelated individuals and 35 deaf patients of Omani ethnicity. This study, which describes a novel LHFPL5 mutation in a family of Omani origin with hereditary hearing loss, supports previous clinical descriptions of the condition and contributes to the genetic spectrum of mutations in this form of deafness.


Subject(s)
Deafness/genetics , Membrane Proteins/genetics , Mutation, Missense , Child , Child, Preschool , Deafness/pathology , Homozygote , Humans , Male , Siblings
13.
Infect Immun ; 87(2)2019 02.
Article in English | MEDLINE | ID: mdl-30510101

ABSTRACT

Toxoplasma gondii is associated with physiological effects in the host. Dysregulation of catecholamines in the central nervous system has previously been observed in chronically infected animals. In the study described here, the noradrenergic system was found to be suppressed with decreased levels of norepinephrine (NE) in brains of infected animals and in infected human and rat neural cells in vitro The mechanism responsible for the NE suppression was found to be downregulation of dopamine ß-hydroxylase (DBH) gene expression, encoding the enzyme that synthesizes norepinephrine from dopamine, with downregulation observed in vitro and in infected brain tissue, particularly in the dorsal locus coeruleus/pons region. The downregulation was sex specific, with males expressing reduced DBH mRNA levels whereas females were unchanged. Rather, DBH expression correlated with estrogen receptor in the female rat brains for this estrogen-regulated gene. DBH silencing was not a general response of neurons to infection, as human cytomegalovirus did not downregulate DBH expression. The noradrenergic-linked behaviors of sociability and arousal were altered in chronically infected animals, with a high correlation between DBH expression and infection intensity. A decrease in DBH expression in noradrenergic neurons can elevate dopamine levels, which provides a possible explanation for mixed observations of changes in this neurotransmitter with infection. Decreased NE is consistent with the loss of coordination and motor impairments associated with toxoplasmosis. Further, the altered norepinephrine synthesis observed here may, in part, explain behavioral effects of infection and associations with mental illness.


Subject(s)
Catecholamines/metabolism , Central Nervous System Diseases/parasitology , Dopamine beta-Hydroxylase/metabolism , Norepinephrine/metabolism , Toxoplasmosis/metabolism , Animals , Brain/metabolism , Central Nervous System Diseases/metabolism , Dopamine/metabolism , Down-Regulation , Gene Expression Regulation , Mice , Neurons/metabolism , RNA, Messenger/metabolism , Rats
14.
Oncotarget ; 9(51): 29634-29643, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-30038709

ABSTRACT

(-)-Englerin A (EA) is a natural product which has potent cytotoxic effects on renal cell carcinoma cells and other types of cancer cell but not non-cancer cells. Although selectively cytotoxic to cancer cells, adverse reaction in mice and rats has been suggested. EA is a remarkably potent activator of ion channels formed by Transient Receptor Potential Canonical 4 and 5 proteins (TRPC4 and TRPC5) and TRPC4 is essential for EA-mediated cancer cell cytotoxicity. Here we specifically investigated the relevance of TRPC4 and TRPC5 to the adverse reaction. Injection of EA (2 mg.kg-1 i.p.) adversely affected mice for about 1 hour, manifesting as a marked reduction in locomotor activity, after which they fully recovered. TRPC4 and TRPC5 single knockout mice were partially protected and double knockout mice fully protected. TRPC4/TRPC5 double knockout mice were also protected against intravenous injection of EA. Importance of TRPC4/TRPC5 channels was further suggested by pre-administration of Compound 31 (Pico145), a potent and selective small-molecule inhibitor of TRPC4/TRPC5 channels which did not cause adverse reaction itself but prevented adverse reaction to EA. EA was detected in the plasma but not the brain and so peripheral mechanisms were implicated but not identified. The data confirm the existence of adverse reaction to EA in mice and suggest that it depends on a combination of TRPC4 and TRPC5 which therefore overlaps partially with TRPC4-dependent cancer cell cytotoxicity. The underlying nature of the observed adverse reaction to EA, as a consequence of TRPC4/TRPC5 channel activation, remains unclear and warrants further investigation.

15.
Biol Psychiatry ; 84(11): 827-837, 2018 12 01.
Article in English | MEDLINE | ID: mdl-28689605

ABSTRACT

BACKGROUND: Alterations in environmental light and intrinsic circadian function have strong associations with mood disorders. The neural origins underpinning these changes remain unclear, although genetic deficits in the molecular clock regularly render mice with altered mood-associated phenotypes. METHODS: A detailed circadian and light-associated behavioral characterization of the Na+/K+-ATPase α3 Myshkin (Myk/+) mouse model of mania was performed. Na+/K+-ATPase α3 does not reside within the core circadian molecular clockwork, but Myk/+ mice exhibit concomitant disruption in circadian rhythms and mood. The neural basis of this phenotype was investigated through molecular and electrophysiological dissection of the master circadian pacemaker, the suprachiasmatic nuclei (SCN). Light input and glutamatergic signaling to the SCN were concomitantly assessed through behavioral assays and calcium imaging. RESULTS: In vivo assays revealed several circadian abnormalities including lengthened period and instability of behavioral rhythms, and elevated metabolic rate. Grossly aberrant responses to light included accentuated resetting, accelerated re-entrainment, and an absence of locomotor suppression. Bioluminescent recording of circadian clock protein (PERIOD2) output from ex vivo SCN revealed no deficits in Myk/+ molecular clock function. Optic nerve crush rescued the circadian period of Myk/+ behavior, highlighting that afferent inputs are critical upstream mediators. Electrophysiological and calcium imaging SCN recordings demonstrated changes in the response to glutamatergic stimulation as well as the electrical output indicative of altered retinal input processing. CONCLUSIONS: The Myshkin model demonstrates profound circadian and light-responsive behavioral alterations independent of molecular clock disruption. Afferent light signaling drives behavioral changes and raises new mechanistic implications for circadian disruption in affective disorders.


Subject(s)
Bipolar Disorder/physiopathology , Circadian Rhythm , Disease Models, Animal , Suprachiasmatic Nucleus/physiopathology , Animals , Bipolar Disorder/metabolism , Female , Locomotion , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Patch-Clamp Techniques , Period Circadian Proteins/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Suprachiasmatic Nucleus/metabolism
16.
Adv Neurobiol ; 17: 103-131, 2017.
Article in English | MEDLINE | ID: mdl-28956331

ABSTRACT

People in modern, affluent societies are living longer but also becoming increasingly overweight. With increased life expectancy comes increased risk of developing age-related cognitive decline and neurodegenerative diseases, such that an increasing proportion of life may be lived with cognitive impairment as age increases. Obesity is associated with poorer cognitive function in elderly subjects, and often leads to ill-health arising from various complications such as metabolic syndrome and type-2 diabetes mellitus. This chapter provides an overview of the effects of administering pan-phosphodiesterase-4 (PDE4) inhibitors to animal models of cognitive ageing, Alzheimer's disease, frontotemporal dementia, fragile X syndrome, obesity and diabetes. Inhibition of the PDE4B subtype specifically is discussed as an approach to avoid the emetic side effects of pan-PDE4 inhibitors, whilst retaining their therapeutic effects. Finally, the findings of rodent studies that employ genetic and pharmacological approaches to specifically target PDE4B are discussed in relation to the potential utility of PDE4B-selective inhibitors for the treatment of cognitive impairment and obesity-related metabolic diseases.


Subject(s)
Alzheimer Disease/drug therapy , Cognitive Aging , Cognitive Dysfunction/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Fragile X Syndrome/drug therapy , Frontotemporal Dementia/drug therapy , Metabolic Syndrome/drug therapy , Phosphodiesterase 4 Inhibitors/therapeutic use , Alzheimer Disease/metabolism , Animals , Cognitive Dysfunction/metabolism , Diabetes Mellitus, Type 2/metabolism , Fragile X Syndrome/metabolism , Frontotemporal Dementia/metabolism , Humans , Metabolic Syndrome/metabolism , Obesity/metabolism
18.
J Neurogenet ; 30(1): 42-9, 2016 03.
Article in English | MEDLINE | ID: mdl-27276195

ABSTRACT

Social behavioral deficits have been observed in patients diagnosed with alternating hemiplegia of childhood (AHC), rapid-onset dystonia-parkinsonism and CAPOS syndrome, in which specific missense mutations in ATP1A3, encoding the Na(+), K(+)-ATPase α3 subunit, have been identified. To test the hypothesis that social behavioral deficits represent part of the phenotype of Na(+), K(+)-ATPase α3 mutations, we assessed the social behavior of the Myshkin mouse model of AHC, which has an I810N mutation identical to that found in an AHC patient with co-morbid autism. Myshkin mice displayed deficits in three tests of social behavior: nest building, pup retrieval and the three-chamber social approach test. Chronic treatment with the mood stabilizer lithium enhanced nest building in wild-type but not Myshkin mice. In light of previous studies revealing a broad profile of neurobehavioral deficits in the Myshkin model - consistent with the complex clinical profile of AHC - our results suggest that Na(+), K(+)-ATPase α3 dysfunction has a deleterious, but nonspecific, effect on social behavior. By better defining the behavioral profile of Myshkin mice, we identify additional ATP1A3-related symptoms for which the Myshkin model could be used as a tool to advance understanding of the underlying neural mechanisms and develop novel therapeutic strategies.


Subject(s)
Behavior, Animal , Disease Models, Animal , Hemiplegia , Animals , Mice , Mice, Mutant Strains
19.
Am J Med Genet A ; 170(7): 1826-31, 2016 07.
Article in English | MEDLINE | ID: mdl-27148795

ABSTRACT

Intellectual disability (ID) is the term used to describe a diverse group of neurological conditions with congenital or juvenile onset, characterized by an IQ score of less than 70 and difficulties associated with limitations in cognitive function and adaptive behavior. The condition can be inherited or caused by environmental factors. The genetic forms are heterogeneous, with mutations in over 500 known genes shown to cause the disorder. We report a consanguineous Omani family in which multiple individuals have ID and developmental delay together with some variably present features including short stature, microcephaly, moderate facial dysmorphism, and congenital malformations of the toes or hands. Homozygosity mapping combined with whole exome next generation sequencing identified a novel homozygous single base pair deletion in TUSC3, c.222delA, p.R74 fs. The mutation segregates with the disease phenotype in a recessive manner and is absent in 60,706 unrelated individuals from various disease-specific and population genetic studies. TUSC3 mutations have been previously identified as causing either syndromic or non-syndromic ID in patients from France, Italy, Iran and Pakistan. This paper supports the previous clinical descriptions of the condition caused by TUSC3 mutations and describes the seventh family with mutations in this gene, thus contributing to the genetic spectrum of mutations. This is the first report of a family from the Arabian peninsula with this form of ID. © 2016 Wiley Periodicals, Inc.


Subject(s)
Developmental Disabilities/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Tumor Suppressor Proteins/genetics , Consanguinity , Developmental Disabilities/epidemiology , Developmental Disabilities/physiopathology , Exome/genetics , Female , France , Genetic Linkage , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/epidemiology , Intellectual Disability/physiopathology , Iran , Male , Mutation , Pakistan , Pedigree
20.
Sci Rep ; 6: 18748, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26728762

ABSTRACT

Disrupted-in-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and affective disorders. The full-length DISC1 protein consists of an N-terminal 'head' domain and a C-terminal tail domain that contains several predicted coiled-coils, structural motifs involved in protein-protein interactions. To probe the in vivo effects of missense mutation of DISC1's C-terminal tail, we tested mice carrying mutation D453G within a predicted α-helical coiled-coil region. We report that, relative to wild-type littermates, female DISC1(D453G) mice exhibited novelty-induced hyperlocomotion, an anxiogenic profile in the elevated plus-maze and open field tests, and reduced social exploration of unfamiliar mice. Male DISC1(D453G) mice displayed a deficit in passive avoidance, while neither males nor females exhibited any impairment in startle reactivity or prepulse inhibition. Whole brain homogenates showed normal levels of DISC1 protein, but decreased binding of DISC1 to GSK3ß, decreased phospho-inhibition of GSK3ß at serine 9, and decreased levels of ß-catenin in DISC1(D453G) mice of either sex. Interrupted GSK3ß signaling may thus be part of the mechanism underlying the behavioral phenotype associated with D453G, in common with the previously described N-terminal domain mutations Q31L and L100P in mice, and the schizophrenia risk-conferring variant R264Q in humans.


Subject(s)
Behavior, Animal , Glycogen Synthase Kinase 3 beta/metabolism , Mutation, Missense , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Interaction Domains and Motifs/genetics , Signal Transduction , Amino Acid Sequence , Animals , Anxiety/genetics , Avoidance Learning , DNA Mutational Analysis , Female , Hyperkinesis/genetics , Male , Mice , Models, Biological , Motor Activity/genetics , Nerve Tissue Proteins/chemistry , Phenotype , Sex Factors , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...