Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Bull Math Biol ; 86(7): 85, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853189

ABSTRACT

How viral infections develop can change based on the number of viruses initially entering the body. The understanding of the impacts of infection doses remains incomplete, in part due to challenging constraints, and a lack of research. Gaining more insights is crucial regarding the measles virus (MV). The higher the MV infection dose, the earlier the peak of acute viremia, but the magnitude of the peak viremia remains almost constant. Measles is highly contagious, causes immunosuppression such as lymphopenia, and contributes substantially to childhood morbidity and mortality. This work investigated mechanisms underlying the observed wild-type measles infection dose responses in cynomolgus monkeys. We fitted longitudinal data on viremia using maximum likelihood estimation, and used the Akaike Information Criterion (AIC) to evaluate relevant biological hypotheses and their respective model parameterizations. The lowest AIC indicates a linear relationship between the infection dose, the initial viral load, and the initial number of activated MV-specific T cells. Early peak viremia is associated with high initial number of activated MV-specific T cells. Thus, when MV infection dose increases, the initial viremia and associated immune cell stimulation increase, and reduce the time it takes for T cell killing to be sufficient, thereby allowing dose-independent peaks for viremia, MV-specific T cells, and lymphocyte depletion. Together, these results suggest that the development of measles depends on virus-host interactions at the start and the efficiency of viral control by cellular immunity. These relationships are additional motivations for prevention, vaccination, and early treatment for measles.


Subject(s)
Macaca fascicularis , Mathematical Concepts , Measles virus , Measles , Viral Load , Viremia , Measles/immunology , Measles/transmission , Measles/prevention & control , Measles/virology , Measles/epidemiology , Animals , Viremia/immunology , Viremia/virology , Measles virus/immunology , Measles virus/pathogenicity , Measles virus/physiology , Likelihood Functions , Humans , Models, Immunological , Models, Biological , T-Lymphocytes/immunology , Lymphocyte Activation
2.
PLoS Negl Trop Dis ; 18(4): e0012081, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38630673

ABSTRACT

BACKGROUND: Dengue virus (DENV) is endemic to many parts of the world and has serious health and socioeconomic effects even in high-income countries, especially with rapid changes in the climate globally. We explored the literature on dengue vector control methods used in high-income, city settings and associations with dengue incidence, dengue prevalence, or mosquito vector densities. METHODS: Studies of any design or year were included if they reported effects on human DENV infection or Aedes vector indices of dengue-specific vector control interventions in high-income, city settings. RESULTS: Of 24 eligible sources, most reported research in the United States (n = 8) or Australia (n = 5). Biocontrol (n = 12) and chemical control (n = 13) were the most frequently discussed vector control methods. Only 6 sources reported data on the effectiveness of a given method in reducing human DENV incidence or prevalence, 2 described effects of larval and adult control on Aedes DENV positivity, 20 reported effectiveness in reducing vector density, using insecticide, larvicide, source reduction, auto-dissemination of pyriproxyfen and Wolbachia, and only 1 described effects on human-vector contact. CONCLUSIONS: As most studies reported reductions in vector densities, rather than any effects on human DENV incidence or prevalence, we can draw no clear conclusions on which interventions might be most effective in reducing dengue in high-income, city areas. More research is needed linking evidence on the effects of different DENV vector control methods with dengue incidence/prevalence or mosquito vector densities in high-income, city settings as this is likely to differ from low-income settings. This is a significant evidence gap as climate changes increase the global reach of DENV. The importance of community involvement was clear in several studies, although it is impossible to tease out the relative contributions of this from other control methods used.


Subject(s)
Aedes , Dengue Virus , Dengue , Adult , Animals , Humans , Dengue/epidemiology , Mosquito Vectors , Mosquito Control/methods , Cities
3.
Lancet Glob Health ; 12(4): e563-e571, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485425

ABSTRACT

BACKGROUND: There have been declines in global immunisation coverage due to the COVID-19 pandemic. Recovery has begun but is geographically variable. This disruption has led to under-immunised cohorts and interrupted progress in reducing vaccine-preventable disease burden. There have, so far, been few studies of the effects of coverage disruption on vaccine effects. We aimed to quantify the effects of vaccine-coverage disruption on routine and campaign immunisation services, identify cohorts and regions that could particularly benefit from catch-up activities, and establish if losses in effect could be recovered. METHODS: For this modelling study, we used modelling groups from the Vaccine Impact Modelling Consortium from 112 low-income and middle-income countries to estimate vaccine effect for 14 pathogens. One set of modelling estimates used vaccine-coverage data from 1937 to 2021 for a subset of vaccine-preventable, outbreak-prone or priority diseases (ie, measles, rubella, hepatitis B, human papillomavirus [HPV], meningitis A, and yellow fever) to examine mitigation measures, hereafter referred to as recovery runs. The second set of estimates were conducted with vaccine-coverage data from 1937 to 2020, used to calculate effect ratios (ie, the burden averted per dose) for all 14 included vaccines and diseases, hereafter referred to as full runs. Both runs were modelled from Jan 1, 2000, to Dec 31, 2100. Countries were included if they were in the Gavi, the Vaccine Alliance portfolio; had notable burden; or had notable strategic vaccination activities. These countries represented the majority of global vaccine-preventable disease burden. Vaccine coverage was informed by historical estimates from WHO-UNICEF Estimates of National Immunization Coverage and the immunisation repository of WHO for data up to and including 2021. From 2022 onwards, we estimated coverage on the basis of guidance about campaign frequency, non-linear assumptions about the recovery of routine immunisation to pre-disruption magnitude, and 2030 endpoints informed by the WHO Immunization Agenda 2030 aims and expert consultation. We examined three main scenarios: no disruption, baseline recovery, and baseline recovery and catch-up. FINDINGS: We estimated that disruption to measles, rubella, HPV, hepatitis B, meningitis A, and yellow fever vaccination could lead to 49 119 additional deaths (95% credible interval [CrI] 17 248-134 941) during calendar years 2020-30, largely due to measles. For years of vaccination 2020-30 for all 14 pathogens, disruption could lead to a 2·66% (95% CrI 2·52-2·81) reduction in long-term effect from 37 378 194 deaths averted (34 450 249-40 241 202) to 36 410 559 deaths averted (33 515 397-39 241 799). We estimated that catch-up activities could avert 78·9% (40·4-151·4) of excess deaths between calendar years 2023 and 2030 (ie, 18 900 [7037-60 223] of 25 356 [9859-75 073]). INTERPRETATION: Our results highlight the importance of the timing of catch-up activities, considering estimated burden to improve vaccine coverage in affected cohorts. We estimated that mitigation measures for measles and yellow fever were particularly effective at reducing excess burden in the short term. Additionally, the high long-term effect of HPV vaccine as an important cervical-cancer prevention tool warrants continued immunisation efforts after disruption. FUNDING: The Vaccine Impact Modelling Consortium, funded by Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation. TRANSLATIONS: For the Arabic, Chinese, French, Portguese and Spanish translations of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 , Hepatitis B , Measles , Meningitis , Papillomavirus Infections , Papillomavirus Vaccines , Rubella , Vaccine-Preventable Diseases , Yellow Fever , Humans , Papillomavirus Infections/prevention & control , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Immunization , Hepatitis B/drug therapy
4.
Epidemics ; 46: 100754, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428358

ABSTRACT

Hand, foot and mouth disease (HFMD) is highly prevalent in the Asia Pacific region, particularly in Vietnam. To develop effective interventions and efficient vaccination programs, we inferred the age-time-specific transmission patterns of HFMD serotypes enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6), coxsackievirus A10 (CV-A10), coxsackievirus A16 (CV-A16) in Ho Chi Minh City, Vietnam from a case data collected during 2013-2018 and a serological survey data collected in 2015 and 2017. We proposed a catalytic model framework with good adaptability to incorporate maternal immunity using various mathematical functions. Our results indicate the high-level transmission of CV-A6 and CV-A10 which is not obvious in the case data, due to the variation of disease severity across serotypes. Our results provide statistical evidence supporting the strong association between severe illness and CV-A6 and EV-A71 infections. The HFMD dynamic pattern presents a cyclical pattern with large outbreaks followed by a decline in subsequent years. Additionally, we identify the age group with highest risk of infection as 1-2 years and emphasise the risk of future outbreaks as over 50% of children aged 6-7 years were estimated to be susceptible to CV-A16 and EV-A71. Our study highlights the importance of multivalent vaccines and active surveillance for different serotypes, supports early vaccination prior to 1 year old, and points out the potential utility for vaccinating children older than 5 years old in Vietnam.


Subject(s)
Benzeneacetamides , Enterovirus , Foot-and-Mouth Disease , Hand, Foot and Mouth Disease , Piperidones , Child , Infant , Animals , Humans , Child, Preschool , Hand, Foot and Mouth Disease/epidemiology , Vietnam/epidemiology , Serogroup , China/epidemiology
5.
Lancet Infect Dis ; 24(5): 488-503, 2024 May.
Article in English | MEDLINE | ID: mdl-38342105

ABSTRACT

BACKGROUND: Chikungunya is an arboviral disease transmitted by Aedes aegypti and Aedes albopictus mosquitoes with a growing global burden linked to climate change and globalisation. We aimed to estimate chikungunya seroprevalence, force of infection (FOI), and prevalence of related chronic disability and hospital admissions in endemic and epidemic settings. METHODS: In this systematic review, meta-analysis, and modelling study, we searched PubMed, Ovid, and Web of Science for articles published from database inception until Sept 26, 2022, for prospective and retrospective cross-sectional studies that addressed serological chikungunya virus infection in any geographical region, age group, and population subgroup and for longitudinal prospective and retrospective cohort studies with data on chronic chikungunya or hospital admissions in people with chikungunya. We did a systematic review of studies on chikungunya seroprevalence and fitted catalytic models to each survey to estimate location-specific FOI (ie, the rate at which susceptible individuals acquire chikungunya infection). We performed a meta-analysis to estimate the proportion of symptomatic patients with laboratory-confirmed chikungunya who had chronic chikungunya or were admitted to hospital following infection. We used a random-effects model to assess the relationship between chronic sequelae and follow-up length using linear regression. The systematic review protocol is registered online on PROSPERO, CRD42022363102. FINDINGS: We identified 60 studies with data on seroprevalence and chronic chikungunya symptoms done across 76 locations in 38 countries, and classified 17 (22%) of 76 locations as endemic settings and 59 (78%) as epidemic settings. The global long-term median annual FOI was 0·007 (95% uncertainty interval [UI] 0·003-0·010) and varied from 0·0001 (0·00004-0·0002) to 0·113 (0·07-0·20). The highest estimated median seroprevalence at age 10 years was in south Asia (8·0% [95% UI 6·5-9·6]), followed by Latin America and the Caribbean (7·8% [4·9-14·6]), whereas median seroprevalence was lowest in the Middle East (1·0% [0·5-1·9]). We estimated that 51% (95% CI 45-58) of people with laboratory-confirmed symptomatic chikungunya had chronic disability after infection and 4% (3-5) were admitted to hospital following infection. INTERPRETATION: We inferred subnational heterogeneity in long-term average annual FOI and transmission dynamics and identified both endemic and epidemic settings across different countries. Brazil, Ethiopia, Malaysia, and India included both endemic and epidemic settings. Long-term average annual FOI was higher in epidemic settings than endemic settings. However, long-term cumulative incidence of chikungunya can be similar between large outbreaks in epidemic settings with a high FOI and endemic settings with a relatively low FOI. FUNDING: International Vaccine Institute.


Subject(s)
Chikungunya Fever , Chikungunya Fever/epidemiology , Humans , Seroepidemiologic Studies , Chikungunya virus/immunology , Prevalence , Epidemics , Endemic Diseases , Adult , Disabled Persons/statistics & numerical data , Male , Female
6.
Cell Genom ; 3(12): 100443, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38116115

ABSTRACT

Genomic sequencing has emerged as a powerful tool to enhance early pathogen detection and characterization with implications for public health and clinical decision making. Although widely available in developed countries, the application of pathogen genomics among low-resource, high-disease burden settings remains at an early stage. In these contexts, tailored approaches for integrating pathogen genomics within infectious disease control programs will be essential to optimize cost efficiency and public health impact. We propose a framework for embedding pathogen genomics within national surveillance plans across a spectrum of surveillance and laboratory capacities. We adopt a public health approach to genomics and examine its application to high-priority diseases relevant in resource-limited settings. For each grouping, we assess the value proposition for genomics to inform public health and clinical decision-making, alongside its contribution toward research and development of novel diagnostics, therapeutics, and vaccines.

7.
Bull Math Biol ; 85(12): 124, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37962713

ABSTRACT

Many infectious diseases exist as multiple variants, with interactions between variants potentially driving epidemiological dynamics. These diseases include dengue, which infects hundreds of millions of people every year and exhibits complex multi-serotype dynamics. Antibodies produced in response to primary infection by one of the four dengue serotypes can produce a period of temporary cross-immunity (TCI) to infection by other serotypes. After this period, the remaining antibodies can facilitate the entry of heterologous serotypes into target cells, thus enhancing severity of secondary infection by a heterologous serotype. This represents antibody-dependent enhancement (ADE). In this study, we analyze an epidemiological model to provide novel insights into the importance of TCI and ADE in producing cyclic outbreaks of dengue serotypes. Our analyses reveal that without TCI, such cyclic outbreaks are synchronous across serotypes and only occur when ADE produces high transmission rates. In contrast, the presence of TCI allows asynchronous cycles of serotypes by inducing a time lag between recovery from primary infection by one serotype and secondary infection by another, with such cycles able to occur without ADE. Our results suggest that TCI is a fundamental driver of asynchronous cycles of dengue serotypes and possibly other multi-variant diseases.


Subject(s)
Coinfection , Dengue , Humans , Serogroup , Mathematical Concepts , Models, Biological , Dengue/epidemiology
8.
BMC Infect Dis ; 23(1): 708, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864153

ABSTRACT

BACKGROUND: Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used. METHODS: We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.). RESULTS: We found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002-2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sample validation procedures. CONCLUSIONS: Here we show that approaches to map risk for different arboviruses have diversified in response to changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus mapping.


Subject(s)
Aedes , Arbovirus Infections , Arboviruses , Chikungunya Fever , Dengue , Yellow Fever , Zika Virus Infection , Zika Virus , Animals , Humans , Arbovirus Infections/epidemiology , Yellow Fever/epidemiology , Mosquito Vectors , Dengue/epidemiology
9.
Vaccine ; 41(33): 4854-4860, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37365059

ABSTRACT

Thailand faced a dilemma of which groups to prioritise with a limited first tranche of COVID-19 vaccinations in early 2021, at a time when there was low incidence and low mortality in the country. A mathematical modelling analysis was performed to compare the potential short-term impact of allocating the available doses to either the high severity group (over 65-year-olds) or the high transmission group (aged 20-39). At the time of the analysis, there was uncertainty about the precise characteristics of the vaccines available, in terms of their potential impact on transmission and reductions to the severity of infection. As such, a range of vaccine characteristic scenarios, with differing levels of severity and transmission reductions were explored. Using the evidence available at the time regarding severity reduction of infection due to the vaccines, the model suggested that vaccinating high severity group should be the priority if reductions in deaths is the priority. Vaccinating this group was found to have a direct impact on reducing the number of deaths, while the incidence and hospitalisations remained unchanged. However, the model found that vaccinating the high transmission group with a vaccine with sufficiently high protection against infection (more than 70%) could provide enough herd effects to delay the expected epidemic peak, resulting in both case and death reductions in both target groups. The model explored a 12-month time horizon. These analyses helped to inform the vaccination strategy in Thailand throughout 2021 and can inform future modelling studies for policymaking when the characteristics of vaccines are uncertain.


Subject(s)
COVID-19 , Vaccines , Humans , Thailand/epidemiology , Uncertainty , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination/methods
10.
BMC Med ; 21(1): 97, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927576

ABSTRACT

BACKGROUND: Understanding the overall effectiveness of non-pharmaceutical interventions to control the COVID-19 pandemic and reduce the burden of disease is crucial for future pandemic planning. However, quantifying the effectiveness of specific control measures and the extent of missed infections, in the absence of early large-scale serological surveys or random community testing, has remained challenging. METHODS: Combining data on notified local COVID-19 cases with known and unknown sources of infections in Singapore with a branching process model, we reconstructed the incidence of missed infections during the early phase of the wild-type SARS-CoV-2 and Delta variant transmission. We then estimated the relative effectiveness of border control measures, case finding and contact tracing when there was no or low vaccine coverage in the population. We compared the risk of ICU admission and death between the wild-type SARS-CoV-2 and the Delta variant in notified cases and all infections. RESULTS: We estimated strict border control measures were associated with 0.2 (95% credible intervals, CrI 0.04-0.8) missed imported infections per notified case between July and December 2020, a decline from around 1 missed imported infection per notified case in the early phases of the pandemic. Contact tracing was estimated to identify 78% (95% CrI 62-93%) of the secondary infections generated by notified cases before the partial lockdown in Apr 2020, but this declined to 63% (95% CrI 56-71%) during the lockdown and rebounded to 78% (95% CrI 58-94%) during reopening in Jul 2020. The contribution of contact tracing towards overall outbreak control also hinges on ability to find cases with unknown sources of infection: 42% (95% CrI 12-84%) of such cases were found prior to the lockdown; 10% (95% CrI 7-15%) during the lockdown; 47% (95% CrI 17-85%) during reopening, due to increased testing capacity and health-seeking behaviour. We estimated around 63% (95% CrI 49-78%) of the wild-type SARS-CoV-2 infections were undetected during 2020 and around 70% (95% CrI 49-91%) for the Delta variant in 2021. CONCLUSIONS: Combining models with case linkage data enables evaluation of the effectiveness of different components of outbreak control measures, and provides more reliable situational awareness when some cases are missed. Using such approaches for early identification of the weakest link in containment efforts could help policy makers to better redirect limited resources to strengthen outbreak control.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Contact Tracing , Communicable Disease Control , Pandemics/prevention & control
11.
Vaccine ; 41(1): 182-192, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36424258

ABSTRACT

In recent decades, there has been an increased interest in developing a vaccine for chikungunya. However, due to its unpredictable transmission, planning for a chikungunya vaccine trial is challenging. To inform decision making on the selection of sites for a vaccine efficacy trial, we developed a new framework for projecting the expected number of endpoint events at a given site. In this framework, we first accounted for population immunity using serological data collated from a systematic review and used it to estimate parameters related to the timing and size of past outbreaks, as predicted by an SIR transmission model. Then, we used that model to project the infection attack rate of a hypothetical future outbreak, in the event that one were to occur at the time of a future trial. This informed projections of how many endpoint events could be expected if a trial were to take place at that site. Our results suggest that some sites may have sufficient transmission potential and susceptibility to support future vaccine trials, in the event that an outbreak were to occur at those sites. In general, we conclude that sites that have experienced outbreaks within the past 10 years may be poorer targets for chikungunya vaccine efficacy trials in the near future. Our framework also generates projections of the numbers of endpoint events by age, which could inform study participant recruitment efforts.


Subject(s)
Chikungunya Fever , Vaccines , Humans , Chikungunya Fever/epidemiology , Chikungunya Fever/prevention & control , Forecasting , Disease Outbreaks/prevention & control
12.
Emerg Infect Dis ; 29(1): 160-163, 2023 01.
Article in English | MEDLINE | ID: mdl-36573590

ABSTRACT

We assessed predominantly pediatric patients in Vietnam with dengue and other febrile illness 3 months after acute illness. Among dengue patients, 47% reported >1 postacute symptom. Most resolved by 3 months, but alopecia and vision problems often persisted. Our findings provide additional evidence on postacute dengue burden and confirm children are affected.


Subject(s)
Dengue , Humans , Child , Dengue/complications , Dengue/diagnosis , Dengue/epidemiology , Vietnam/epidemiology
15.
Epidemics ; 39: 100581, 2022 06.
Article in English | MEDLINE | ID: mdl-35636311

ABSTRACT

We present a country specific method to calculate the COVID-19 vaccination coverage needed for herd immunity by considering age structure, age group-specific contact patterns, relative infectivity and susceptibility of children to adults, vaccination effectiveness and seroprevalence prior to vaccination. We find that across all six countries, vaccination of adults age 60 and above has little impact on Reff and this is could be due to the smaller number of contacts between this age group and the rest of the population according to the contact matrices used. If R0 is above 6, herd immunity by vaccine alone is unattainable for most countries either if vaccination is only available for adults or that vaccine effectiveness is lower at 65% against symptomatic infections. In this situation, additional control measures, booster shots, if they improve protection against infection, or the extension of vaccination to children, are required. For a highly transmissible variant with R0 up to 8, herd immunity is possible for all countries and for all four scenarios of varying relative infectivity and susceptibility of children compared to adults, if vaccine effectiveness is very high at 95% against symptomatic infections and that high vaccination coverage is achieved for both adults and children. In addition, we show that the effective reproduction number will vary between countries even if the same proportion of the population is vaccinated, depending on the demographics, the contact rates and the previous pre-vaccination seroprevalence in the country. This therefore means that care must be taken in extrapolating population level impacts of certain vaccine coverages from one country to another.


Subject(s)
COVID-19 , Immunity, Herd , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Humans , Middle Aged , Seroepidemiologic Studies , Vaccination/methods , Vaccination Coverage
16.
PLoS Negl Trop Dis ; 16(5): e0010361, 2022 05.
Article in English | MEDLINE | ID: mdl-35613183

ABSTRACT

BACKGROUND: Japanese Encephalitis (JE) is known for its high case fatality ratio (CFR) and long-term neurological sequelae. Over the years, efforts in JE treatment and control might change the JE fatality risk. However, previous estimates were from 10 years ago, using data from cases in the 10 years before this. Estimating JE disease severity is challenging because data come from countries with different JE surveillance systems, diagnostic methods, and study designs. Without precise and timely JE disease severity estimates, there is continued uncertainty about the JE disease burden and the effect of JE vaccination. METHODOLOGY: We performed a systematic review to collate age-stratified JE fatality and morbidity data. We used a stepwise model selection with BIC as the selection criteria to identify JE CFR drivers. We used stacked regression, to predict country-specific JE CFR from 1961 to 2030. JE morbidity estimates were grouped from similar study designs to estimate the proportion of JE survivors with long-term neurological sequelae. PRINCIPAL FINDINGS: We included 82 and 50 peer-reviewed journal articles published as of March 06 2021 for JE fatality and morbidity with 22 articles in both analyses. Results suggested overall JE CFR estimates of 26% (95% CI 22, 30) in 1961-1979, 20% (95% CI 17, 24) in 1980-1999, 14% (95% CI 11, 17) in 2000-2018, and 14% (95% CI 11, 17) in 2019-2030. Holding other variables constant, we found that JE fatality risk decreased over time (OR: 0.965; 95% CI: 0.947-0.983). Younger JE cases had a slightly higher JE fatality risk (OR: 1.012; 95% CI: 1.003-1.021). The odds of JE fatality in countries with JE vaccination is 0.802 (90% CI: 0.653-0.994; 95% CI: 0.62-1.033) times lower than the odds in countries without JE vaccination. Ten percentage increase in the percentage of rural population to the total population was associated with 15.35% (95% CI: 7.71, 22.57) decrease in JE fatality odds. Ten percentage increase in population growth rate is associated with 3.71% (90% CI: 0.23, 7.18; 95% CI: -0.4, 8.15) increase in JE fatality odds. Adjusting for the effect of year, rural population percent, age of JE cases, and population growth rate, we estimated that there was a higher odds of JE fatality in India compared to China. (OR: 5.46, 95% CI: 3.61-8.31). Using the prediction model we found that, in 2000-2018, Brunei, Pakistan, and Timor-Leste were predicted to have the highest JE CFR of 20%. Bangladesh, Guam, Pakistan, Philippines, and Vietnam had projected JE CFR over 20% for after 2018, whereas the projected JE CFRs were below 10% in China, Indonesia, Cambodia, Myanmar, Malaysia, and Thailand. For disability, we estimated that 36% (min-max 0-85) JE patients recovered fully at hospital discharge. One year after hospital discharge, 46% (min-max 0%-97%) JE survivors were estimated to live normally but 49% (min-max 3% - 86%)till had neurological sequelae. CONCLUSION: JE CFR estimates were lower than 20% after 2000. Our study provides an updated estimation of CFR and proportion of JE cases with long-term neurological sequelae that could help to refine cost-benefit assessment for JE control and elimination programs.


Subject(s)
Encephalitis, Japanese , Japanese Encephalitis Vaccines , China , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/prevention & control , Humans , Morbidity , Philippines/epidemiology , Thailand
17.
PLoS Comput Biol ; 18(4): e1009979, 2022 04.
Article in English | MEDLINE | ID: mdl-35363786

ABSTRACT

As the most widespread viral infection transmitted by the Aedes mosquitoes, dengue has been estimated to cause 51 million febrile disease cases globally each year. Although sustained vector control remains key to reducing the burden of dengue, current understanding of the key factors that explain the observed variation in the short- and long-term vector control effectiveness across different transmission settings remains limited. We used a detailed individual-based model to simulate dengue transmission with and without sustained vector control over a 30-year time frame, under different transmission scenarios. Vector control effectiveness was derived for different time windows within the 30-year intervention period. We then used the extreme gradient boosting algorithm to predict the effectiveness of vector control given the simulation parameters, and the resulting machine learning model was interpreted using Shapley Additive Explanations. According to our simulation outputs, dengue transmission would be nearly eliminated during the early stage of sustained and intensive vector control, but over time incidence would gradually bounce back to the pre-intervention level unless the intervention is implemented at a very high level of intensity. The time point at which intervention ceases to be effective is strongly influenced not only by the intensity of vector control, but also by the pre-intervention transmission intensity and the individual-level heterogeneity in biting risk. Moreover, the impact of many transmission model parameters on the intervention effectiveness is shown to be modified by the intensity of vector control, as well as to vary over time. Our study has identified some of the critical drivers for the difference in the time-varying effectiveness of sustained vector control across different dengue endemic settings, and the insights obtained will be useful to inform future model-based studies that seek to predict the impact of dengue vector control in their local contexts.


Subject(s)
Aedes , Dengue , Animals , Computer Simulation , Dengue/epidemiology , Dengue/prevention & control , Incidence , Mosquito Vectors
18.
Epidemics ; 38: 100552, 2022 03.
Article in English | MEDLINE | ID: mdl-35259693

ABSTRACT

COVID-19 disease models have aided policymakers in low-and middle-income countries (LMICs) with many critical decisions. Many challenges remain surrounding their use, from inappropriate model selection and adoption, inadequate and untimely reporting of evidence, to the lack of iterative stakeholder engagement in policy formulation and deliberation. These issues can contribute to the misuse of models and hinder effective policy implementation. Without guidance on how to address such challenges, the true potential of such models may not be realised. The COVID-19 Multi-Model Comparison Collaboration (CMCC) was formed to address this gap. CMCC is a global collaboration between decision-makers from LMICs, modellers and researchers, and development partners. To understand the limitations of existing COVID-19 disease models (primarily from high income countries) and how they could be adequately support decision-making in LMICs, a desk review of modelling experience during the COVID-19 and past disease outbreaks, two online surveys, and regular online consultations were held among the collaborators. Three key recommendations from CMCC include: A 'fitness-for-purpose' flowchart, a tool that concurrently walks policymakers (or their advisors) and modellers through a model selection and development process. The flowchart is organised around the following: policy aims, modelling feasibility, model implementation, model reporting commitment. Holmdahl and Buckee (2020) A 'reporting standards trajectory', which includes three gradually increasing standard of reports, 'minimum', 'acceptable', and 'ideal', and seeks collaboration from funders, modellers, and decision-makers to enhance the quality of reports over time and accountability of researchers. Malla et al. (2018) A framework for "collaborative modelling for effective policy implementation and evaluation" which extends the definition of stakeholders to funders, ground-level implementers, public, and other researchers, and outlines how each can contribute to modelling. We advocate for standardisation of modelling processes and adoption of country-owned model through iterative stakeholder participation and discuss how they can enhance trust, accountability, and public ownership to decisions.


Subject(s)
COVID-19 , Health Policy , COVID-19/epidemiology , Humans , Pandemics , Policy Making
19.
PLoS Biol ; 20(3): e3001160, 2022 03.
Article in English | MEDLINE | ID: mdl-35302985

ABSTRACT

The spatial distribution of dengue and its vectors (spp. Aedes) may be the widest it has ever been, and projections suggest that climate change may allow the expansion to continue. However, less work has been done to understand how climate variability and change affects dengue in regions where the pathogen is already endemic. In these areas, the waxing and waning of immunity has a large impact on temporal dynamics of cases of dengue haemorrhagic fever. Here, we use 51 years of data across 72 provinces and characterise spatiotemporal patterns of dengue in Thailand, where dengue has caused almost 1.5 million cases over the last 30 years, and examine the roles played by temperature and dynamics of immunity in giving rise to those patterns. We find that timescales of multiannual oscillations in dengue vary in space and time and uncover an interesting spatial phenomenon: Thailand has experienced multiple, periodic synchronisation events. We show that although patterns in synchrony of dengue are similar to those observed in temperature, the relationship between the two is most consistent during synchronous periods, while during asynchronous periods, temperature plays a less prominent role. With simulations from temperature-driven models, we explore how dynamics of immunity interact with temperature to produce the observed patterns in synchrony. The simulations produced patterns in synchrony that were similar to observations, supporting an important role of immunity. We demonstrate that multiannual oscillations produced by immunity can lead to asynchronous dynamics and that synchrony in temperature can then synchronise these dengue dynamics. At higher mean temperatures, immune dynamics can be more predominant, and dengue dynamics more insensitive to multiannual fluctuations in temperature, suggesting that with rising mean temperatures, dengue dynamics may become increasingly asynchronous. These findings can help underpin predictions of disease patterns as global temperatures rise.


Subject(s)
Dengue , Epidemics , Dengue/epidemiology , Humans , Incidence , Mosquito Vectors , Temperature , Thailand/epidemiology
20.
Int J Infect Dis ; 117: 103-115, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35123027

ABSTRACT

INTRODUCTION: Ten years of conflict has displaced more than half of Northwest Syria's (NWS) population and decimated the health system, water and sanitation, and public health infrastructure vital for infectious disease control. The first NWS COVID-19 case was declared on July 9, 2020, but impact estimations in this region are minimal. With the rollout of vaccination and emergence of the B.1.617.2 (Delta) variant, we aimed to estimate the COVID-19 trajectory in NWS and the potential effects of vaccine coverage and hospital occupancy. METHODS: We conducted a mixed-method study, primarily including modeling projections of COVID-19 transmission scenarios with vaccination strategies using an age-structured, compartmental susceptible-exposed-infectious-recovered (SEIR) model, supported by data from 20 semi-structured interviews with frontline health workers to help contextualize interpretation of modeling results. RESULTS: Modeling suggested that existing low stringency non-pharmaceutical interventions (NPIs) minimally affected COVID-19 transmission. Maintaining existing NPIs after the Delta variant introduction is predicted to result in a second COVID-19 wave, overwhelming hospital capacity and resulting in a fourfold increased death toll. Simulations with up to 60% vaccination coverage by June 2022 predict that a second wave is not preventable with current NPIs. However, 60% vaccination coverage by June 2022 combined with 50% coverage of mask-wearing and handwashing should reduce the number of hospital beds and ventilators needed below current capacity levels. In the worst-case scenario of a more transmissible and lethal variant emerging by January 2022, the third wave is predicted. CONCLUSION: Total COVID-19 attributable deaths are expected to remain relatively low owing largely to a young population. Given the negative socioeconomic consequences of restrictive NPIs, such as border or school closures for an already deeply challenged population and their relative ineffectiveness in this context, policymakers and international partners should instead focus on increasing COVID-19 vaccination coverage as rapidly as possible and encouraging mask-wearing.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Pandemics/prevention & control , Syria/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...