Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Great Lakes Res ; 50: 1-13, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38783923

ABSTRACT

The North American Great Lakes have been experiencing dramatic change during the past half-century, highlighting the need for holistic, ecosystem-based approaches to management. To assess interest in ecosystem-based management (EBM), including the value of a comprehensive public database that could serve as a repository for the numerous physical, chemical, and biological monitoring Great Lakes datasets that exist, a two-day workshop was organized, which was attended by 40+ Great Lakes researchers, managers, and stakeholders. While we learned during the workshop that EBM is not an explicit mission of many of the participating research, monitoring, and management agencies, most have been conducting research or monitoring activities that can support EBM. These contributions have ranged from single-resource (-sector) management to considering the ecosystem holistically in a decision-making framework. Workshop participants also identified impediments to implementing EBM, including: 1) high anticipated costs; 2) a lack of EBM success stories to garner agency buy-in; and 3) difficulty in establishing common objectives among groups with different mandates (e.g., water quality vs. fisheries production). We discussed as a group solutions to overcome these impediments, including construction of a comprehensive, research-ready database, a prototype of which was presented at the workshop. We collectively felt that such a database would offer a cost-effective means to support EBM approaches by facilitating research that could help identify useful ecosystem indicators and management targets and allow for management strategy evaluations that account for risk and uncertainty when contemplating future decision-making.

2.
Biol Invasions ; : 1-17, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37362907

ABSTRACT

The goal of most invasive species suppression programs is to achieve long-term sustained reductions in population abundance, yet removal programs can be stymied by density-dependent population responses. We tested a harvest removal strategy for invasive Rusty Crayfish (Faxonius rusticus) at two nearshore native fish spawning habitats in northern Lake Michigan. Changes in average Rusty Crayfish densities were evaluated with a before-after reference-impact study design. We removed 3182 Rusty Crayfish, primarily adults (> 20 mm carapace length), at two sites over two harvest seasons, expending 17,825 trap days in effort. Generalized linear modeling results suggested a statistically significant reduction in Rusty Crayfish densities was achieved at one reef, Little Traverse Bay (LTB Crib). Reduced densities were sustained over the egg maturation period for native fish and into the following year after removal ceased. By late summer/early fall, between consecutive suppression efforts in 2018 and 2019, we observed a threefold increase in pre-removal densities. Size-frequency histograms from diver quadrat surveys showed higher abundances of juvenile (< 20 mm carapace length) size classes the following spring and summer at LTB Crib compared to its paired reference site. Stock-recruit curves fit to count data, pooled across all sites, provided further evidence of density-dependence. With a proviso that we only conducted two seasons of consecutive suppression, this study highlights an important aspect of invasive species management and raises questions about the efficacy of adult-only crayfish removal strategies. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-023-03076-6.

3.
Ecol Evol ; 9(16): 8922-8932, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31462991

ABSTRACT

Maintenance of genetic and phenotypic diversity is widely recognized as an important conservation priority, yet managers often lack basic information about spatial patterns of population structure and its relationship with habitat heterogeneity and species movement within it. To address this knowledge gap, we focused on the economically and ecologically prominent yellow perch (Perca flavescens). In the Lake Michigan basin, yellow perch reside in nearshore Lake Michigan, including drowned river mouths (DRMs)-protected, lake-like habitats that link tributaries to Lake Michigan. The goal of this study was to examine the extent that population structure is associated with Great Lakes connected habitats (i.e., DRMs) in a mobile fish species using yellow perch as a model. Specifically, we tested whether DRMs and eastern Lake Michigan constitute distinct genetic stocks of yellow perch, and if so, whether those stocks migrate between the two connected habitats throughout the year. To do so, we genotyped yellow perch at 14 microsatellite loci collected from 10 DRMs in both deep and littoral habitats during spring, summer, and autumn and two nearshore sites in Lake Michigan (spring and autumn) during 2015-2016 and supplemented our sampling with fish collected in 2013. We found that yellow perch from littoral-DRM habitats were genetically distinct from fish captured in nearshore Lake Michigan. Our data also suggested that Lake Michigan yellow perch likely use deep-DRM habitats during autumn. Further, we found genetic structuring among DRMs. These patterns support hypotheses of fishery managers that yellow perch seasonally migrate to and from Lake Michigan, yet, interestingly, these fish do not appear to interbreed with littoral fish despite occupying the same DRM. We recommend that fisheries managers account for this complex population structure and movement when setting fishing regulations and assessing the effects of harvest in Lake Michigan.

SELECTION OF CITATIONS
SEARCH DETAIL
...