Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Immunother Cancer ; 11(3)2023 03.
Article in English | MEDLINE | ID: mdl-36868570

ABSTRACT

BACKGROUND: Loss of Ambra1 (autophagy and beclin 1 regulator 1), a multifunctional scaffold protein, promotes the formation of nevi and contributes to several phases of melanoma development. The suppressive functions of Ambra1 in melanoma are mediated by negative regulation of cell proliferation and invasion; however, evidence suggests that loss of Ambra1 may also affect the melanoma microenvironment. Here, we investigate the possible impact of Ambra1 on antitumor immunity and response to immunotherapy. METHODS: This study was performed using an Ambra1-depleted BrafV600E /Pten-/ - genetically engineered mouse (GEM) model of melanoma, as well as GEM-derived allografts of BrafV600E /Pten-/ - and BrafV600E /Pten-/ -/Cdkn2a-/ - tumors with Ambra1 knockdown. The effects of Ambra1 loss on the tumor immune microenvironment (TIME) were analyzed using NanoString technology, multiplex immunohistochemistry, and flow cytometry. Transcriptome and CIBERSORT digital cytometry analyses of murine melanoma samples and human melanoma patients (The Cancer Genome Atlas) were applied to determine the immune cell populations in null or low-expressing AMBRA1 melanoma. The contribution of Ambra1 on T-cell migration was evaluated using a cytokine array and flow cytometry. Tumor growth kinetics and overall survival analysis in BrafV600E /Pten-/ -/Cdkn2a-/ - mice with Ambra1 knockdown were evaluated prior to and after administration of a programmed cell death protein-1 (PD-1) inhibitor. RESULTS: Loss of Ambra1 was associated with altered expression of a wide range of cytokines and chemokines as well as decreased infiltration of tumors by regulatory T cells, a subpopulation of T cells with potent immune-suppressive properties. These changes in TIME composition were associated with the autophagic function of Ambra1. In the BrafV600E /Pten-/ -/Cdkn2a-/ - model inherently resistant to immune checkpoint blockade, knockdown of Ambra1 led to accelerated tumor growth and reduced overall survival, but at the same time conferred sensitivity to anti-PD-1 treatment. CONCLUSIONS: This study shows that loss of Ambra1 affects the TIME and the antitumor immune response in melanoma, highlighting new functions of Ambra1 in the regulation of melanoma biology.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Animals , Mice , Autophagy , Cell Movement , Cell Proliferation , Cytokines , Tumor Microenvironment , Adaptor Proteins, Signal Transducing
2.
Nat Rev Clin Oncol ; 19(12): 749-762, 2022 12.
Article in English | MEDLINE | ID: mdl-36207413

ABSTRACT

High serum lactate dehydrogenase (LDH) levels are typically associated with a poor prognosis in many cancer types. Even the most effective drugs, which have radically improved outcomes in patients with melanoma over the past decade, provide only marginal benefit to those with high serum LDH levels. When viewed separately from the oncological, biochemical, biological and immunological perspectives, serum LDH is often interpreted in very different ways. Oncologists usually see high serum LDH only as a robust biomarker of a poor prognosis, and biochemists are aware of the complexity of the various LDH isoforms and of their key roles in cancer metabolism, whereas LDH is typically considered to be oncogenic and/or immunosuppressive by cancer biologists and immunologists. Integrating these various viewpoints shows that the regulation of the five LDH isoforms, and their enzymatic and non-enzymatic functions is closely related to key oncological processes. In this Review, we highlight that serum LDH is far more than a simple indicator of tumour burden; it is a complex biomarker associated with the activation of several oncogenic signalling pathways as well as with the metabolic activity, invasiveness and immunogenicity of many tumours, and constitutes an extremely attractive target for cancer therapy.


Subject(s)
L-Lactate Dehydrogenase , Melanoma , Humans , L-Lactate Dehydrogenase/metabolism , Tumor Burden , Prognosis
3.
Nat Commun ; 12(1): 2550, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953176

ABSTRACT

Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development. Indeed, we show that Ambra1 deficiency confers accelerated tumor growth and decreased overall survival in Braf/Pten-mutated mouse models of melanoma. Also, we demonstrate that Ambra1 deletion promotes melanoma aggressiveness and metastasis by increasing cell motility/invasion and activating an EMT-like process. Moreover, we show that Ambra1 deficiency in melanoma impacts extracellular matrix remodeling and induces hyperactivation of the focal adhesion kinase 1 (FAK1) signaling, whose inhibition is able to reduce cell invasion and melanoma growth. Overall, our findings identify a function for AMBRA1 as tumor suppressor in melanoma, proposing FAK1 inhibition as a therapeutic strategy for AMBRA1 low-expressing melanoma.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Melanoma/genetics , Melanoma/metabolism , Animals , Autophagy/physiology , Beclin-1/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Models, Animal , Female , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Melanoma/pathology , Mice , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phenotype , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Signal Transduction , Transcriptome
4.
EMBO Rep ; 22(1): e50500, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33245190

ABSTRACT

The denitrosylase S-nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S-nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox-mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox-insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T-cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function.


Subject(s)
Aldehyde Oxidoreductases , Mitophagy , Aldehyde Oxidoreductases/metabolism , Cellular Senescence , Oxidation-Reduction , Oxidative Stress/genetics
5.
Cell Rep ; 15(9): 1884-92, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27210757

ABSTRACT

Melanoma is one of the most lethal cutaneous malignancies, characterized by chemoresistance and a striking propensity to metastasize. The transcription factor ATF2 elicits oncogenic activities in melanoma, and its inhibition attenuates melanoma development. Here, we show that expression of a transcriptionally inactive form of Atf2 (Atf2(Δ8,9)) promotes development of melanoma in mouse models. Atf2(Δ8,9)-driven tumors show enhanced pigmentation, immune infiltration, and metastatic propensity. Similar to mouse Atf2(Δ8,9), we have identified a transcriptionally inactive human ATF2 splice variant 5 (ATF2(SV5)) that enhances the growth and migration capacity of cultured melanoma cells and immortalized melanocytes. ATF2(SV5) expression is elevated in human melanoma specimens and is associated with poor prognosis. These findings point to an oncogenic function for ATF2 in melanoma development that appears to be independent of its transcriptional activity.


Subject(s)
Activating Transcription Factor 2/genetics , Carcinogenesis/genetics , Melanoma/genetics , Melanoma/pathology , Mutation/genetics , Skin Neoplasms/genetics , Transcription, Genetic , Alternative Splicing/genetics , Animals , Carcinogenesis/pathology , Disease Models, Animal , Humans , Melanocytes/metabolism , Melanocytes/pathology , Mice, Inbred C57BL , Neoplasm Metastasis , Nevus/genetics , Nevus/pathology , Oncogenes , Proto-Oncogene Proteins B-raf/deficiency , Proto-Oncogene Proteins B-raf/metabolism , Skin Neoplasms/pathology
6.
Sci Signal ; 8(406): ra124, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26645581

ABSTRACT

Melanoma is one of the most lethal skin cancers worldwide, primarily because of its propensity to metastasize. Thus, the elucidation of mechanisms that govern metastatic propensity is urgently needed. We found that protein kinase Cε (PKCε)-mediated activation of activating transcription factor 2 (ATF2) controls the migratory and invasive behaviors of melanoma cells. PKCε-dependent phosphorylation of ATF2 promoted its transcriptional repression of the gene encoding fucokinase (FUK), which mediates the fucose salvage pathway and thus global cellular protein fucosylation. In primary melanocytes and cell lines representing early-stage melanoma, the abundance of PKCε-phosphorylated ATF2 was low, thereby enabling the expression of FUK and cellular protein fucosylation, which promoted cellular adhesion and reduced motility. In contrast, increased expression of the gene encoding PKCε and abundance of phosphorylated, transcriptionally active ATF2 were observed in advanced-stage melanomas and correlated with decreased FUK expression, decreased cellular protein fucosylation, attenuated cell adhesion, and increased cell motility. Restoring fucosylation in mice either by dietary fucose supplementation or by genetic manipulation of murine Fuk expression attenuated primary melanoma growth, increased the number of intratumoral natural killer cells, and decreased distal metastasis in murine isograft models. Tumor microarray analysis of human melanoma specimens confirmed reduced fucosylation in metastatic tumors and a better prognosis for primary melanomas that had high abundance of fucosylation. Thus, inhibiting PKCε or ATF2 or increasing protein fucosylation in tumor cells may improve clinical outcome in melanoma patients.


Subject(s)
Activating Transcription Factor 2/metabolism , Fucose/metabolism , Melanoma/metabolism , Neoplasm Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Activating Transcription Factor 2/genetics , Animals , Cell Line, Tumor , Fucose/genetics , Glycosylation , Humans , Melanocytes/metabolism , Melanocytes/pathology , Melanoma/genetics , Melanoma/pathology , Mice , Neoplasm Metastasis , Neoplasm Proteins/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics
8.
Cancer Cell ; 23(3): 332-46, 2013 Mar 18.
Article in English | MEDLINE | ID: mdl-23518348

ABSTRACT

Understanding the mechanism underlying the regulation of the androgen receptor (AR), a central player in the development of castration-resistant prostate cancer (CRPC), holds promise for overcoming the challenge of treating CRPC. We demonstrate that the ubiquitin ligase Siah2 targets a select pool of NCOR1-bound, transcriptionally-inactive AR for ubiquitin-dependent degradation, thereby promoting expression of select AR target genes implicated in lipid metabolism, cell motility, and proliferation. Siah2 is required for prostate cancer cell growth under androgen-deprivation conditions in vitro and in vivo, and Siah2 inhibition promotes prostate cancer regression upon castration. Notably, Siah2 expression is markedly increased in human CRPCs. Collectively, we find that selective regulation of AR transcriptional activity by the ubiquitin ligase Siah2 is important for CRPC development.


Subject(s)
Nuclear Proteins/metabolism , Nuclear Receptor Co-Repressor 1/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Transcription, Genetic , Ubiquitin-Protein Ligases/metabolism , Animals , Castration , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Lipid Metabolism , Male , Mice , Nuclear Proteins/genetics , RNA Interference , RNA, Small Interfering , Signal Transduction , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics
9.
J Cell Sci ; 124(Pt 1): 91-9, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21147852

ABSTRACT

Meiosis is a crucial process for the production of functional gametes. However, the biological significance of many genes expressed during the meiotic phase remains poorly understood, mainly because of the lethal phenotypes of the knockout mice. Functional analysis of such genes using the conditional knockout approach is hindered by the lack of suitable Cre transgenic lines. We describe here the generation of transgenic mice expressing Cre recombinase under the control of the meiotic Spo11 gene. Using LacZ-R26(loxP) and EYFP-R26(loxP) reporter mice, we show the specific expression and activity of Cre during meiosis in males and females. Spo11(Cre) mice were then crossed with floxed Nbs1 and JAM-C mice to produce conditional knockouts. A strong reduction of Nbs1 and JAM-C protein levels was found in the testis. Although Nbs1-deleted mice developed minor gonadal abnormalities, JAM-C-knockout mice showed a spermiogenetic arrest, as previously described for the null mice. These results provide strong evidence that Spo11(Cre) transgenic mice represent a powerful tool for deleting genes of interest specifically in meiotic and/or in postmeiotic germ cells.


Subject(s)
Endodeoxyribonucleases/genetics , Gene Deletion , Gene Targeting/methods , Germ Cells/enzymology , Integrases/metabolism , Animals , Endodeoxyribonucleases/metabolism , Female , Germ Cells/cytology , Integrases/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Miosis , Promoter Regions, Genetic
10.
PLoS One ; 5(2): e9064, 2010 Feb 04.
Article in English | MEDLINE | ID: mdl-20140225

ABSTRACT

A critical step of spermatogenesis is the entry of mitotic spermatogonia into meiosis. Progresses on these topics are hampered by the lack of an in vitro culture system allowing mouse spermatogonia differentiation and entry into meiosis. Previous studies have shown that mouse pachytene spermatocytes cultured in simulated microgravity (SM) undergo a spontaneous meiotic progression. Here we report that mouse mitotic spermatogonia cultured under SM with a rotary cell culture system (RCCS) enter into meiosis in the absence of any added exogenous factor or contact with somatic cells. We found that isolated Kit-positive spermatogonia under the RCCS condition enter into the prophase of the first meiotic division (leptotene stage), as monitored by chromosomal organization of the synaptonemal complex 3 protein (Scp3) and up-regulation of several pro-meiotic genes. SM was found to activate the phosphatidyl inositol 3 kinase (PI3K) pathway and to induce in Kit-positive spermatogonia the last round of DNA replication, typical of the preleptotene stage. A PI3K inhibitor abolished Scp3 induction and meiotic entry stimulated by RCCS conditions. A positive effect of SM on germ cell differentiation was also observed in undifferentiated (Kit-negative) spermatogonia, in which RCCS conditions stimulate the expression of Kit and Stra8. In conclusion, SM is an artificial environmental condition which promotes postnatal male germ cell differentiation and might provide a tool to study the molecular mechanisms underlying the switch from mitosis to meiosis in mammals.


Subject(s)
Cell Differentiation/physiology , Meiosis/physiology , Spermatogonia/metabolism , Weightlessness Simulation , Animals , Blotting, Western , Cell Culture Techniques , Cell Differentiation/genetics , Cells, Cultured , DNA/biosynthesis , Enzyme Activation , Male , Meiosis/genetics , Mice , Microscopy, Confocal , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology , Spermatocytes/cytology , Spermatocytes/metabolism , Spermatogonia/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...