Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Sci Adv ; 10(28): eado1453, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38985862

ABSTRACT

The interplay between humans and their microbiome is crucial for various physiological processes, including nutrient absorption, immune defense, and maintaining homeostasis. Microbiome alterations can directly contribute to diseases or heighten their likelihood. This relationship extends beyond humans; microbiota play vital roles in other organisms, including eukaryotic pathogens causing severe diseases. Notably, Wolbachia, a bacterial microbiota, is essential for parasitic worms responsible for lymphatic filariasis and onchocerciasis, devastating human illnesses. Given the lack of rapid cures for these infections and the limitations of current treatments, new drugs are imperative. Here, we disrupt Wolbachia's symbiosis with pathogens using boron-based compounds targeting an unprecedented Wolbachia enzyme, leucyl-tRNA synthetase (LeuRS), effectively inhibiting its growth. Through a compound demonstrating anti-Wolbachia efficacy in infected cells, we use biophysical experiments and x-ray crystallography to elucidate the mechanism behind Wolbachia LeuRS inhibition. We reveal that these compounds form adenosine-based adducts inhibiting protein synthesis. Overall, our study underscores the potential of disrupting key microbiota to control infections.


Subject(s)
Microbiota , Wolbachia , Wolbachia/drug effects , Humans , Animals , Leucine-tRNA Ligase/metabolism , Leucine-tRNA Ligase/antagonists & inhibitors , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Crystallography, X-Ray , Boron Compounds/pharmacology , Boron Compounds/chemistry , Symbiosis , Models, Molecular
2.
BMJ Glob Health ; 9(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38485142

ABSTRACT

INTRODUCTION: Antivenom is a lifesaving medicine for treating snakebite envenoming, yet there has been a crisis in antivenom supply for many decades. Despite this, substantial quantities of antivenom stocks expire before use. This study has investigated whether expired antivenoms retain preclinical quality and efficacy, with the rationale that they could be used in emergency situations when in-date antivenom is unavailable. METHODS: Using WHO guidelines and industry test requirements, we examined the in vitro stability and murine in vivo efficacy of eight batches of the sub-Saharan African antivenom, South African Institute for Medical Research polyvalent, that had expired at various times over a period of 30 years. RESULTS: We demonstrate modest declines in immunochemical stability, with antivenoms older than 25 years having high levels of turbidity. In vitro preclinical analysis demonstrated all expired antivenoms retained immunological recognition of venom antigens and the ability to inhibit key toxin families. All expired antivenoms retained comparable in vivo preclinical efficacy in preventing the lethal effects of envenoming in mice versus three regionally and medically important venoms. CONCLUSIONS: This study provides strong rationale for stakeholders, including manufacturers, regulators and health authorities, to explore the use of expired antivenom more broadly, to aid in alleviating critical shortages in antivenom supply in the short term and the extension of antivenom shelf life in the longer term.


Subject(s)
Antivenins , Snake Bites , Mice , Humans , Animals , Antivenins/therapeutic use , Snake Bites/drug therapy , Venoms/therapeutic use
3.
Mil Psychol ; 35(6): 552-565, 2023.
Article in English | MEDLINE | ID: mdl-37903170

ABSTRACT

As one of the most racially/ethnically diverse workplaces in the United States, the Department of Defense (DoD) has been on the forefront in driving diversity initiatives. Yet, racial/ethnic harassment and discrimination (REHD) in the military persist and threaten mission readiness. Despite this, limited research exists identifying factors that influence REHD in the U.S. military that could be leveraged for prevention and intervention. In this study, we sought to identify how diversity, equity, and inclusion (DEI) factors in the workplace are associated with REHD in order to identify potential targets for prevention and policy efforts to improve racial/ethnic relations in the U.S. military. Using the 2017 Workplace and Equal Opportunity Survey of Active Duty Members, we found military, leadership, and unit DEI climate factors were the top predictors of REHD, though the relative importance of each predictor varied by racial/ethnic minority status. In particular, we found military and leadership attention to REHD to be the top predictors for Racial/Ethnic Minority active duty members whereas workplace hostility was the top predictor for non-Hispanic White active duty members. Implications for programs and policies surrounding REHD in the U.S. military are discussed.


Subject(s)
Military Personnel , Racism , Humans , United States , Ethnicity , Military Personnel/psychology , Diversity, Equity, Inclusion , Minority Groups
4.
Biochem Pharmacol ; 216: 115758, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37604290

ABSTRACT

Snakebite envenoming is a neglected tropical disease that causes over 100,000 deaths annually. Envenomings result in variable pathologies, but systemic neurotoxicity is among the most serious and is currently only treated with difficult to access and variably efficacious commercial antivenoms. Venom-induced neurotoxicity is often caused by α-neurotoxins antagonising the muscle-type nicotinic acetylcholine receptor (nAChR), a ligand-gated ion channel. Discovery of therapeutics targeting α-neurotoxins is hampered by relying on binding assays that do not reveal restoration of receptor activity or more costly and/or lower throughput electrophysiology-based approaches. Here, we report the validation of a screening assay for nAChR activation using immortalised TE671 cells expressing the γ-subunit containing muscle-type nAChR and a fluorescent dye that reports changes in cell membrane potential. Assay validation using traditional nAChR agonists and antagonists, which either activate or block ion fluxes, was consistent with previous studies. We then characterised antagonism of the nAChR by a variety of elapid snake venoms that cause muscle paralysis in snakebite victims, before defining the toxin-inhibiting activities of commercial antivenoms, and new types of snakebite therapeutic candidates, namely monoclonal antibodies, decoy receptors, and small molecules. Our findings show robust evidence of assay uniformity across 96-well plates and highlight the amenability of this approach for the future discovery of new snakebite therapeutics via screening campaigns. The described assay therefore represents a useful first-step approach for identifying α-neurotoxins and their inhibitors in the context of snakebite envenoming, and it should provide wider value for studying modulators of nAChR activity from other sources.


Subject(s)
Receptors, Nicotinic , Snake Bites , Humans , Receptors, Nicotinic/metabolism , Neurotoxins/toxicity , Neurotoxins/chemistry , Snake Bites/drug therapy , Antivenins/pharmacology , Elapid Venoms/chemistry , Muscles/metabolism
5.
Front Pharmacol ; 14: 1328950, 2023.
Article in English | MEDLINE | ID: mdl-38273820

ABSTRACT

Snakebite envenoming results in ∼100,000 deaths per year, with close to four times as many victims left with life-long sequelae. Current antivenom therapies have several limitations including high cost, variable cross-snake species efficacy and a requirement for intravenous administration in a clinical setting. Next-generation snakebite therapies are being widely investigated with the aim to improve cost, efficacy, and safety. In recent years several small molecule drugs have shown considerable promise for snakebite indication, with oral bioavailability particularly promising for community delivery rapidly after a snakebite. However, only two such drugs have entered clinical development for snakebite. To offset the risk of attrition during clinical trials and to better explore the chemical space for small molecule venom toxin inhibitors, here we describe the first high throughput drug screen against snake venom metalloproteinases (SVMPs)-a pathogenic toxin family responsible for causing haemorrhage and coagulopathy. Following validation of a 384-well fluorescent enzymatic assay, we screened a repurposed drug library of 3,547 compounds against five geographically distinct and toxin variable snake venoms. Our drug screen resulted in the identification of 14 compounds with pan-species inhibitory activity. Following secondary potency testing, four SVMP inhibitors were identified with nanomolar EC50s comparable to the previously identified matrix metalloproteinase inhibitor marimastat and superior to the metal chelator dimercaprol, doubling the current global portfolio of SVMP inhibitors. Following analysis of their chemical structure and ADME properties, two hit-to-lead compounds were identified. These clear starting points for the initiation of medicinal chemistry campaigns provide the basis for the first ever designer snakebite specific small molecules.

6.
Front Pharmacol ; 14: 1331224, 2023.
Article in English | MEDLINE | ID: mdl-38273832

ABSTRACT

Snakebite envenoming is a neglected tropical disease that causes as many as 1.8 million envenomings and 140,000 deaths annually. To address treatment limitations that exist with current antivenoms, the search for small molecule drug-based inhibitors that can be administered as early interventions has recently gained traction. Snake venoms are complex mixtures of proteins, peptides and small molecules and their composition varies substantially between and within snake species. The phospholipases A2 (PLA2) are one of the main pathogenic toxin classes found in medically important viper and elapid snake venoms, yet varespladib, a drug originally developed for the treatment of acute coronary syndrome, remains the only PLA2 inhibitor shown to effectively neutralise venom toxicity in vitro and in vivo, resulting in an extremely limited drug portfolio. Here, we describe a high-throughput drug screen to identify novel PLA2 inhibitors for repurposing as snakebite treatments. We present method optimisation of a 384-well plate, colorimetric, high-throughput screening assay that allowed for a throughput of ∼2,800 drugs per day, and report on the screening of a ∼3,500 post-phase I repurposed drug library against the venom of the Russell's viper, Daboia russelii. We further explore the broad-spectrum inhibitory potential and efficacy of the resulting top hits against a range of medically important snake venoms and demonstrate the utility of our method in determining drug EC50s. Collectively, our findings support the future application of this method to fully explore the chemical space to discover novel PLA2-inhibiting drugs of value for preventing severe pathology caused by snakebite envenoming.

7.
Toxicon X ; 14: 100118, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35321116

ABSTRACT

Snakebite envenoming affects more than 250,000 people annually in sub-Saharan Africa. Envenoming by Dispholidus typus (boomslang) results in venom-induced consumption coagulopathy (VICC), whereby highly abundant prothrombin-activating snake venom metalloproteinases (SVMPs) consume clotting factors and deplete fibrinogen. The only available treatment for D. typus envenoming is the monovalent SAIMR Boomslang antivenom. Treatment options are urgently required because this antivenom is often difficult to source and, at US$6000/vial, typically unaffordable for most snakebite patients. We therefore investigated the in vitro and in vivo preclinical efficacy of four SVMP inhibitors to neutralise the effects of D. typus venom; the matrix metalloproteinase inhibitors marimastat and prinomastat, and the metal chelators dimercaprol and DMPS. The venom of D. typus exhibited an SVMP-driven procoagulant phenotype in vitro. Marimastat and prinomastat demonstrated equipotent inhibition of the SVMP-mediated procoagulant activity of the venom in vitro, whereas dimercaprol and DMPS showed considerably lower potency. However, when tested in preclinical murine models of envenoming using mixed sex CD1 mice, DMPS and marimastat demonstrated partial protection against venom lethality, demonstrated by prolonged survival times of experimental animals, whereas dimercaprol and prinomastat failed to confer any protection at the doses tested. The preclinical results presented here demonstrate that DMPS and marimastat show potential as novel small molecule-based therapeutics for D. typus snakebite envenoming. These two drugs have been previously shown to be effective against Echis ocellatus VICC in preclinical models, and thus we conclude that marimastat and DMPS should be further explored as potentially valuable early intervention therapeutics to broadly treat VICC following snakebite envenoming in sub-Saharan Africa.

8.
ACS Med Chem Lett ; 12(9): 1421-1426, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34527179

ABSTRACT

Anti-Wolbachia therapy has been identified as a viable treatment for combating filarial diseases. Phenotypic screening revealed a series of pyrazolopyrimidine hits with potent anti-Wolbachia activity. This paper focuses on the exploration of the SAR for this chemotype, with improvement of metabolic stability and solubility profiles using medicinal chemistry approaches. Organic synthesis has enabled functionalization of the pyrazolopyrimidine core at multiple positions, generating a library of compounds of which many analogues possess nanomolar activity against Wolbachia in vitro with improved DMPK parameters. A lead compound, 15f, was selected for in vivo pharmacokinetics (PK) profiling in mice. The combination of potent anti-Wolbachia activity in two in vitro assessments plus the exceptional oral PK profiles in mice puts this lead compound in a strong position for in vivo proof-of-concept pharmacodynamics studies and demonstrates the strong potential for further optimization and development of this series for treatment of filariasis in the future.

9.
Toxins (Basel) ; 13(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209691

ABSTRACT

A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.


Subject(s)
Antivenins/therapeutic use , Low-Level Light Therapy , Snake Bites/therapy , Snake Venoms/antagonists & inhibitors , Animals , Clinical Trials as Topic , Humans , Research Design , Snake Venoms/chemistry , Snake Venoms/toxicity
10.
Trends Pharmacol Sci ; 42(5): 340-353, 2021 05.
Article in English | MEDLINE | ID: mdl-33773806

ABSTRACT

Snakebite envenoming is responsible for as many as 138 000 deaths annually, making it the world's most lethal neglected tropical disease (NTD). There is an urgent need to improve snakebite treatment, which currently relies on outdated and poorly tolerated biologic antivenoms that are often weakly efficacious, must be given intravenously in a healthcare setting, and are expensive to those who need them the most. Herein we describe the challenges associated with the discovery and development of new snakebite treatments and detail the great potential of venom toxin-inhibiting small molecule drugs. We finish by highlighting successful enabling strategies applied to other NTDs that could be exploited to facilitate the development of next-generation small molecule-based snakebite treatments.


Subject(s)
Snake Bites , Antivenins , Delivery of Health Care , Drug Discovery , Humans , Neglected Diseases/drug therapy , Snake Bites/drug therapy
11.
SLAS Discov ; 24(5): 537-547, 2019 06.
Article in English | MEDLINE | ID: mdl-30958712

ABSTRACT

The Anti- Wolbachia (A·WOL) consortium at the Liverpool School of Tropical Medicine (LSTM) has partnered with the Global High-Throughput Screening (HTS) Centre at AstraZeneca to create the first anthelmintic HTS for neglected tropical diseases (NTDs). The A·WOL consortium aims to identify novel macrofilaricidal drugs targeting the essential bacterial symbiont ( Wolbachia) of the filarial nematodes causing onchocerciasis and lymphatic filariasis. Working in collaboration, we have validated a robust high-throughput assay capable of identifying compounds that selectively kill Wolbachia over the host insect cell. We describe the development and validation process of this complex, phenotypic high-throughput assay and provide an overview of the primary outputs from screening the AstraZeneca library of 1.3 million compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , High-Throughput Screening Assays , Host-Pathogen Interactions/drug effects , Wolbachia/drug effects , Anti-Bacterial Agents/chemistry , Cell Culture Techniques/methods , Drug Discovery , Elephantiasis, Filarial/drug therapy , Humans , Image Cytometry , Onchocerciasis/drug therapy , Wolbachia/pathogenicity , Wolbachia/ultrastructure
12.
Sci Transl Med ; 11(483)2019 03 13.
Article in English | MEDLINE | ID: mdl-30867321

ABSTRACT

There is an urgent global need for a safe macrofilaricide drug to accelerate elimination of the neglected tropical diseases onchocerciasis and lymphatic filariasis. From an anti-infective compound library, the macrolide veterinary antibiotic, tylosin A, was identified as a hit against Wolbachia This bacterial endosymbiont is required for filarial worm viability and fertility and is a validated target for macrofilaricidal drugs. Medicinal chemistry was undertaken to develop tylosin A analogs with improved oral bioavailability. Two analogs, A-1535469 and A-1574083, were selected. Their efficacy was tested against the gold-standard second-generation tetracycline antibiotics, doxycycline and minocycline, in mouse and gerbil infection models of lymphatic filariasis (Brugia malayi and Litomosoides sigmodontis) and onchocerciasis (Onchocerca ochengi). A 1- or 2-week course of oral A-1535469 or A-1574083 provided >90% Wolbachia depletion from nematodes in infected animals, resulting in a block in embryogenesis and depletion of microfilarial worm loads. The two analogs delivered comparative or superior efficacy compared to a 3- to 4-week course of doxycycline or minocycline. A-1574083 (now called ABBV-4083) was selected for further preclinical testing. Cardiovascular studies in dogs and toxicology studies in rats and dogs revealed no adverse effects at doses (50 mg/kg) that achieved plasma concentrations >10-fold above the efficacious concentration. A-1574083 (ABBV-4083) shows potential as an anti-Wolbachia macrolide with an efficacy, pharmacology, and safety profile that is compatible with a short-term oral drug course for treating lymphatic filariasis and onchocerciasis.


Subject(s)
Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/microbiology , Macrolides/administration & dosage , Macrolides/therapeutic use , Onchocerciasis/drug therapy , Onchocerciasis/microbiology , Wolbachia/physiology , Administration, Oral , Animals , Disease Models, Animal , Elephantiasis, Filarial/blood , Female , Macrolides/adverse effects , Male , Mice, Inbred BALB C , Mice, SCID , Onchocerciasis/blood , Treatment Outcome , Tylosin/blood , Tylosin/chemical synthesis , Tylosin/chemistry , Tylosin/therapeutic use
13.
J Med Chem ; 62(5): 2521-2540, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30730745

ABSTRACT

A series of pleuromutilins modified by introduction of a boron-containing heterocycle on C(14) of the polycyclic core are described. These analogs were found to be potent anti- Wolbachia antibiotics and, as such, may be useful in the treatment of filarial infections caused by Onchocerca volvulus, resulting in Onchocerciasis or river blindness, or Wuchereria bancrofti and Brugia malayi and related parasitic nematodes resulting in lymphatic filariasis. These two important neglected tropical diseases disproportionately impact patients in the developing world. The lead preclinical candidate compound containing 7-fluoro-6-oxybenzoxaborole (15, AN11251) was shown to have good in vitro anti- Wolbachia activity and physicochemical and pharmacokinetic properties providing high exposure in plasma. The lead was effective in reducing the Wolbachia load in filarial worms following oral administration to mice.


Subject(s)
Boron/pharmacology , Diterpenes/pharmacology , Elephantiasis, Filarial/drug therapy , Filaricides/therapeutic use , Onchocerciasis/drug therapy , Polycyclic Compounds/pharmacology , Wolbachia/drug effects , Wuchereria bancrofti/drug effects , Animals , Boron/chemistry , Diterpenes/chemistry , Filaricides/pharmacokinetics , Filaricides/pharmacology , Mice , Mice, Inbred BALB C , Mice, SCID , Polycyclic Compounds/chemistry , Pleuromutilins
14.
Nat Commun ; 10(1): 11, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30602718

ABSTRACT

Nematodes causing lymphatic filariasis and onchocerciasis rely on their bacterial endosymbiont, Wolbachia, for survival and fecundity, making Wolbachia a promising therapeutic target. Here we perform a high-throughput screen of AstraZeneca's 1.3 million in-house compound library and identify 5 novel chemotypes with faster in vitro kill rates (<2 days) than existing anti-Wolbachia drugs that cure onchocerciasis and lymphatic filariasis. This industrial scale anthelmintic neglected tropical disease (NTD) screening campaign is the result of a partnership between the Anti-Wolbachia consortium (A∙WOL) and AstraZeneca. The campaign was informed throughout by rational prioritisation and triage of compounds using cheminformatics to balance chemical diversity and drug like properties reducing the chance of attrition from the outset. Ongoing development of these multiple chemotypes, all with superior time-kill kinetics than registered antibiotics with anti-Wolbachia activity, has the potential to improve upon the current therapeutic options and deliver improved, safer and more selective macrofilaricidal drugs.


Subject(s)
Drug Discovery , Filaricides/analysis , High-Throughput Screening Assays , Aedes , Animals , Cell Line , Wolbachia
15.
Proc Natl Acad Sci U S A ; 116(4): 1414-1419, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30617067

ABSTRACT

Onchocerciasis and lymphatic filariasis are two neglected tropical diseases that together affect ∼157 million people and inflict severe disability. Both diseases are caused by parasitic filarial nematodes with elimination efforts constrained by the lack of a safe drug that can kill the adult filaria (macrofilaricide). Previous proof-of-concept human trials have demonstrated that depleting >90% of the essential nematode endosymbiont bacterium, Wolbachia, using antibiotics, can lead to permanent sterilization of adult female parasites and a safe macrofilaricidal outcome. AWZ1066S is a highly specific anti-Wolbachia candidate selected through a lead optimization program focused on balancing efficacy, safety and drug metabolism/pharmacokinetic (DMPK) features of a thienopyrimidine/quinazoline scaffold derived from phenotypic screening. AWZ1066S shows superior efficacy to existing anti-Wolbachia therapies in validated preclinical models of infection and has DMPK characteristics that are compatible with a short therapeutic regimen of 7 days or less. This candidate molecule is well-positioned for onward development and has the potential to make a significant impact on communities affected by filariasis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Wolbachia/drug effects , Animals , Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/microbiology , Female , Male , Mice , Mice, SCID , Onchocerciasis/drug therapy , Onchocerciasis/microbiology , Pyrimidines/pharmacology , Quinazolines/pharmacology
19.
Proc Natl Acad Sci U S A ; 114(45): E9712-E9721, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29078351

ABSTRACT

Elimination of filariasis requires a macrofilaricide treatment that can be delivered within a 7-day period. Here we have identified a synergy between the anthelmintic albendazole (ABZ) and drugs depleting the filarial endosymbiont Wolbachia, a proven macrofilaricide target, which reduces treatment from several weeks to 7 days in preclinical models. ABZ had negligible effects on Wolbachia but synergized with minocycline or rifampicin (RIF) to deplete symbionts, block embryogenesis, and stop microfilariae production. Greater than 99% Wolbachia depletion following 7-day combination of RIF+ABZ also led to accelerated macrofilaricidal activity. Thus, we provide preclinical proof-of-concept of treatment shortening using antibiotic+ABZ combinations to deliver anti-Wolbachia sterilizing and macrofilaricidal effects. Our data are of immediate public health importance as RIF+ABZ are registered drugs and thus immediately implementable to deliver a 1-wk macrofilaricide. They also suggest that novel, more potent anti-Wolbachia drugs under development may be capable of delivering further treatment shortening, to days rather than weeks, if combined with benzimidazoles.


Subject(s)
Albendazole/pharmacology , Anti-Bacterial Agents/pharmacology , Filariasis/drug therapy , Wolbachia/drug effects , Animals , Benzimidazoles/pharmacology , Brugia malayi/microbiology , Drug Synergism , Female , Male , Mice , Mice, Inbred BALB C , Minocycline/pharmacology , Rifampin/pharmacology
20.
Sci Adv ; 3(9): eaao1551, 2017 09.
Article in English | MEDLINE | ID: mdl-28959730

ABSTRACT

Lymphatic filariasis and onchocerciasis are two important neglected tropical diseases (NTDs) that cause severe disability. Control efforts are hindered by the lack of a safe macrofilaricidal drug. Targeting the Wolbachia bacterial endosymbionts in these parasites with doxycycline leads to a macrofilaricidal outcome, but protracted treatment regimens and contraindications restrict its widespread implementation. The Anti-Wolbachia consortium aims to develop improved anti-Wolbachia drugs to overcome these barriers. We describe the first screening of a large, diverse compound library against Wolbachia. This whole-organism screen, streamlined to reduce bottlenecks, produced a hit rate of 0.5%. Chemoinformatic analysis of the top 50 hits led to the identification of six structurally diverse chemotypes, the disclosure of which could offer interesting avenues of investigation to other researchers active in this field. An example of hit-to-lead optimization is described to further demonstrate the potential of developing these high-quality hit series as safe, efficacious, and selective anti-Wolbachia macrofilaricides.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Evaluation, Preclinical/methods , Small Molecule Libraries , Wolbachia/drug effects , Cluster Analysis , Computational Biology/methods , Drug Discovery/methods , Humans , Reproducibility of Results , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...