Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-468428

ABSTRACT

We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus ob-scure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized. ACM Reference FormatAbigail Dommer1{dagger}, Lorenzo Casalino1{dagger}, Fiona Kearns1{dagger}, Mia Rosenfeld1, Nicholas Wauer1, Surl-Hee Ahn1, John Russo,2 Sofia Oliveira3, Clare Morris1, AnthonyBogetti4, AndaTrifan5,6, Alexander Brace5,7, TerraSztain1,8, Austin Clyde5,7, Heng Ma5, Chakra Chennubhotla4, Hyungro Lee9, Matteo Turilli9, Syma Khalid10, Teresa Tamayo-Mendoza11, Matthew Welborn11, Anders Christensen11, Daniel G. A. Smith11, Zhuoran Qiao12, Sai Krishna Sirumalla11, Michael OConnor11, Frederick Manby11, Anima Anandkumar12,13, David Hardy6, James Phillips6, Abraham Stern13, Josh Romero13, David Clark13, Mitchell Dorrell14, Tom Maiden14, Lei Huang15, John McCalpin15, Christo- pherWoods3, Alan Gray13, MattWilliams3, Bryan Barker16, HarindaRajapaksha16, Richard Pitts16, Tom Gibbs13, John Stone6, Daniel Zuckerman2*, Adrian Mulholland3*, Thomas MillerIII11,12*, ShantenuJha9*, Arvind Ramanathan5*, Lillian Chong4*, Rommie Amaro1*. 2021. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy ofDeltaSARS-CoV-2 in a Respiratory Aerosol. In Supercomputing 21: International Conference for High Perfor-mance Computing, Networking, Storage, and Analysis. ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOI

2.
J Alzheimers Dis ; 46(4): 1111-27, 2015.
Article in English | MEDLINE | ID: mdl-26402637

ABSTRACT

Accumulating evidence shows nutritional factors influence the risk of developing Alzheimer's disease (AD) and its rate of clinical progression. Dietary and lifestyle guidelines to help adults reduce their risk have been developed. However, the clinical dementia picture remains complex, and further evidence is required to demonstrate that modifying nutritional status can protect the brain and prevent, delay, or reduce pathophysiological consequences of AD. Moreover, there is a pressing need for further research because of the global epidemic of overweight and obesity combined with longer life expectancy of the general population and generally observed decreases in body weight with aging and AD. A new research approach is needed, incorporating more sophisticated models to account for complex scenarios influencing the relationship between nutritional status and AD. Systematic research should identify and address evidence gaps. Integrating longitudinal epidemiological data with biomarkers of disease, including brain imaging technology, and randomized controlled interventions may provide greater insights into progressive and subtle neurological changes associated with dietary factors in individuals at risk for or living with AD. In addition, greater understanding of mechanisms involved in nutritional influences on AD risk and progression, such as oxidative stress and loss of neuronal membrane integrity, will better inform possible interventional strategies. There is consensus among the authors that nutritional deficits, and even states of excess, are associated with AD, but more work is needed to determine cause and effect. Appropriately designed diets or nutritional interventions may play a role, but additional research is needed on their clinical-cognitive effectiveness.


Subject(s)
Alzheimer Disease/psychology , Nutritional Status , Disease Progression , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...