Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(7): 2069-2079, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38436394

ABSTRACT

The current challenge in using extracellular vesicles (EVs) as drug delivery vehicles is to precisely control their membrane permeability, specifically in the ability to switch between permeable and impermeable states without compromising their integrity and functionality. Here, we introduce a rapid, efficient, and gentle loading method for EVs based on tonicity control (TC) using a lab-on-a-disc platform. In this technique, a hypotonic solution was used for temporarily permeabilizing a membrane ("on" state), allowing the influx of molecules into EVs. The subsequent isotonic washing led to an impermeable membrane ("off" state). This loading cycle enables the loading of different cargos into EVs, such as doxorubicin hydrochloride (Dox), ssDNA, and miRNA. The TC approach was shown to be more effective than traditional methods such as sonication or extrusion, with loading yields that were 4.3-fold and 7.2-fold greater, respectively. Finally, the intracellular assessments of miRNA-497-loaded EVs and doxorubicin-loaded EVs confirmed the superior performance of TC-prepared formulations and demonstrated the impact of encapsulation heterogeneity on the therapeutic outcome, signifying potential opportunities for developing novel exosome-based therapeutic systems for clinical applications.


Subject(s)
Exosomes , Extracellular Vesicles , MicroRNAs , Cell Communication , Doxorubicin/pharmacology , Drug Delivery Systems/methods
2.
Lab Chip ; 22(14): 2726-2740, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35763032

ABSTRACT

In preclinical and clinical studies, it has been demonstrated that tumor-educated platelets play a critical role in tumorigenesis, cancer development, and metastasis. Unlike the role of cancer-derived chemokines in platelet activation, the role of cancer-derived extracellular vesicles (EVs) has remained elusive. Here, we found that interleukin-8 (IL-8) in cancer-derived EVs contributed to platelet activation by increasing P-selectin expression and ligand affinity, resulting in increased platelet adhesion on the human vessel-mimicking microfluidic system. Furthermore, platelet adhesion levels on vessels treated with human plasma-derived EVs demonstrated good discrimination between breast cancer patients with metastasis and those without, with the area under the curve (AUC) value of 0.88. While EpCAM expression on EVs could detect the existence of a tumor (AUC = 0.89), it performed poorly in predicting metastasis (AUC = 0.42). We believe that these findings shed light on the role of the interaction between cancer-derived EVs and platelets in pre-metastatic niche formation and tumor metastasis, potentially leading to the development of platelet-tumor interaction-based novel diagnostic and therapeutic strategies.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Blood Platelets/metabolism , Breast Neoplasms/pathology , Extracellular Vesicles/metabolism , Female , Humans , Neoplasm Metastasis/pathology , Platelet Activation , Platelet Adhesiveness
SELECTION OF CITATIONS
SEARCH DETAIL
...