Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 61(12): 3486-3493, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35471446

ABSTRACT

The center-of-mass motion of optically trapped dielectric nanoparticles in a vacuum is extremely well decoupled from its environment, making a powerful tool for measurements of feeble subattonewton forces. We demonstrate a method to trap and maneuver nanoparticles in an optical standing wave potential formed by retroreflecting a laser beam from a metallic mirror surface. We can reliably position a ∼170nm diameter silica nanoparticle at distances of a few hundred nanometers to tens of micrometers from the surface of a gold-coated silicon mirror by transferring it from a single-beam tweezer trap into the standing wave potential. We can further measure forces experienced by the particle while scanning the two-dimensional space parallel to the mirror surface, and we find no significant excess force noise in the vicinity of the surface. This method may enable three-dimensional scanning force sensing near surfaces using optically trapped nanoparticles, promising for high-sensitivity scanning force microscopy, tests of the Casimir effect, and tests of the gravitational inverse square law at micrometer scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...