Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 205: 627-634, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29715677

ABSTRACT

To assess radium (226Ra) as a potential indicator of impact in well waters, we investigated its behavior under natural conditions using a case study approach. 226Ra geochemistry was investigated in 67 private wells of southeastern New Brunswick, Canada, a region targeted for potential shale gas exploitation. Objectives were to i) establish 226Ra baseline in groundwater; ii) characterize 226Ra spatial distribution and temporal variability; iii) characterize 226Ra partitioning between dissolved phase and particulate forms in well waters; and iv) understand the mechanisms controlling 226Ra mobility under natural environmental settings. 226Ra levels were generally low (median = 0.061 pg L-1, or 2.2 mBq L-1), stable over time, and randomly distributed. A principal component analysis revealed that concentrations of 226Ra were controlled by key water geochemistry factors: the highest levels were observed in waters with high hardness, and/or high concentrations of individual alkaline earth elements (i.e. Mg, Ca, Sr, Ba), high concentrations of Mn and Fe, and low pH. As for partitioning, 226Ra was essentially observed in the dissolved phase (106 ±â€¯19%) suggesting that the geochemical conditions of groundwater in the studied regions are prone to limit 226Ra sorption, enhancing its mobility. Overall, this study provided comprehensive knowledge on 226Ra background distribution at local and regional scales. Moreover, it provided a framework to establish 226Ra baselines and determine which geochemical conditions to monitor in well waters in order to use this radionuclide as an indicator of environmental impact caused by anthropogenic activities (e.g. unconventional shale gas exploitation, uranium mining, or nuclear generating power plants).


Subject(s)
Environment , Environmental Monitoring/methods , Radium/chemistry , Water Pollutants, Radioactive/chemistry , Water Pollutants, Radioactive/analysis , Water Wells
2.
Neurotoxicology ; 64: 126-133, 2018 01.
Article in English | MEDLINE | ID: mdl-28867366

ABSTRACT

We evaluated hair, toenails, and saliva (whole and supernatant) as biomarkers of exposure to manganese (Mn) in 274 school age children (6-13 years) consuming well water in southeastern New Brunswick, Canada. Mn concentrations in tap water ranged from <0.03 to 1046µgL-1 (geometric mean 5.96µgL-1). The geometric mean of Mn intake resulting from the consumption of water was 0.25 (0-34.95) µg kg-1day-1. Both Mn concentration in water and Mn intake were significantly correlated with Mn in hair (r=0.60 and r=0.53, respectively), Mn in toenail (r=0.29 and r=0.37 respectively) and to a lesser extent with Mn in saliva supernatant (r=0.14 and r=0.18, respectively). Mn in whole saliva did not correlate with Mn in water or Mn intake. Both Mn in hair and Mn in toenail allowed to discriminate the most exposed group from the least exposed group, based on Mn in water and Mn intake from water. In this group of children with low level Mn exposure, Mn concentrations in hair, and toenails reflected reasonably well Mn exposure from drinking water, whereas Mn content in saliva correlated less strongly.


Subject(s)
Drinking Water/chemistry , Environmental Exposure , Hair/chemistry , Manganese/analysis , Nails/chemistry , Saliva/chemistry , Adolescent , Biomarkers/chemistry , Child , Female , Humans , Male , Manganese/chemistry
3.
Talanta ; 167: 658-665, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28340775

ABSTRACT

Radium (Ra) at environmental relevant levels in natural waters was determined by ICP-MS after an off-line pre-concentration procedure. The latter consisted of Ra selective elution from potential interfering elements (i.e. other alkaline earth cations: Ba2+, Sr2+, Ca2+, Mg2+) on a series of two different ion exchange resins (AG50W-X8 and Sr-resin). The overall analytical method was optimized according to the instrumental performance, the volume of water sample loaded on resins, and the sample salinity. Longer acquisition time (up to 150 s) was required to ensure stable measurement of Ra by ICP-MS at ultra trace level (1.0pgL-1). For a synthetic groundwater spiked with Ra at 10.0pgL-1, the analytical procedure demonstrated efficient separation of the analyte from its potential interfering elements and a complete recovery, independent of the sample volume tested from 10 up to 100mL. For synthetic seawater spiked at a level of 10.0pgL-1 of Ra, the total load of salts on the two resins should not exceed 0.35g in order to ensure a complete separation and recovery of Ra. The method was validated on natural waters (i.e. groundwater, freshwater and seawater samples) spiked with Ra at different levels (0.0, 0.5, 1.0 and 5.0pgL-1). Absolute Ra detection limits were determined at 0.020pgL-1 (0.73mBqL-1) and 0.12pgL-1 (4.4mBqL-1) respectively for 60.0mL of freshwater sample and for 10.0mL of seawater.

4.
Environ Sci Technol ; 45(4): 1506-12, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21222459

ABSTRACT

Diffusive gradient in thin film (DGT) sediment probes for methylmercury (MMHg) were successfully deployed for up to 30 h in three mudflat sediments in San Francisco Bay for measuring labile fractions of dissolved MMHg in pore water. Our calculations show that the local DGT-induced depletion of MMHg in sediment pore waters should be fully compensated by the natural in situ MMHg production and its subsequent remobilization from the solid phase. DGT results were interpreted in terms of labile pore water concentration and provide MMHg concentration depth profiles with a centimeter resolution. Average concentrations of DGT-labile MMHg were 2.10 ± 0.29 and 1.64 ± 0.30 ng L(-1) at China Camp and Hamilton Army Airfield sediment pore waters, respectively, while the riverine location at Petaluma showed a distinct peak of 7.1 ng L(-1) near the sediment surface. Using isotope-enriched mercury species, high resolution depth profiles of MMHg net production rates ranging from 0.2 to 9.8 ng g(-1) d(-1) were obtained in parallel sediment cores sampled closely to DGT deployment sites. A positive, linear relationship between MMHg net production rates and labile MMHg concentrations acquired through DGT measurements was found and explained 79% of the variability in the data set. The latter illustrates that mercury methylation, a biogeochemical process, strongly affected the quantity of MMHg accumulated by the DGT device in the sediment and suggests that DGT measurements have the potential to predict net methylation rates.


Subject(s)
Geologic Sediments/chemistry , Methylmercury Compounds/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Mercury/chemistry , Methylation , San Francisco
5.
Environ Sci Technol ; 44(3): 901-7, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20020679

ABSTRACT

Arctic snowpacks are often considered as temporary reservoirs for atmospheric mercury (Hg) deposited during springtime deposition events (AMDEs). The fate of deposited species is of utmost importance because melt leads to the transfer of contaminants to snowmelt-fed ecosystems. Here, we examined the deposition, fate, and transfer of mercury species (total Hg (THg) and methylmercury (MeHg)) in an arctic environment from the beginning of mass deposition of Hg during AMDEs to the full melt of the snow. Following these events, important amounts of THg were deposited onto the snow surface with concentrations reaching 373 ng.L(-1) and estimated deposition fluxes of 200-2160 ng.m(-2). Most of the deposited Hg was re-emitted to the atmosphere via photochemical reactions. However, a fraction remained stored in the snow and we estimated that the spring melt contributed to an input of 1.5-3.6 kg.year(-1) of THg to the fjord (i.e., 8-21% of the fjord's THg content). A monitoring of MeHg in snow using a new technique (DGT sensors) is also presented.


Subject(s)
Air Pollutants/chemistry , Mercury/chemistry , Seawater/chemistry , Snow , Water Pollutants, Chemical/chemistry , Arctic Regions , Atmosphere , Environmental Monitoring , Time Factors
6.
Environ Pollut ; 157(3): 987-93, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19028412

ABSTRACT

The diffusive gradient in thin film (DGT) technique was successfully used to monitor methylmercury (MeHg) speciation in the dissolved phase of a stratified boreal lake, Lake 658 of the Experimental Lakes Area (ELA) in Ontario, Canada. Water samples were conventionally analysed for MeHg, sulfides, and dissolved organic matter (DOM). MeHg accumulated by DGT devices was compared to MeHg concentration measured conventionally in water samples to establish MeHg speciation. In the epilimnion, MeHg was almost entirely bound to DOM. In the top of the hypolimnion an additional labile fraction was identified, and at the bottom of the lake a significant fraction of MeHg was potentially associated to colloidal material. As part of the METAALICUS project, isotope enriched inorganic mercury was applied to Lake 658 and its watershed for several years to establish the relationship between atmospheric Hg deposition and Hg in fish. Little or no difference in MeHg speciation in the dissolved phase was detected between ambient and spike MeHg.


Subject(s)
Fresh Water/chemistry , Methylmercury Compounds/analysis , Models, Chemical , Water Pollutants, Chemical/analysis , Chemical Fractionation , Chromatography, Gas , Ecology/methods , Humic Substances , Mercury/analysis , Ontario , Tandem Mass Spectrometry , Time Factors
7.
J Environ Monit ; 8(12): 1242-7, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17133281

ABSTRACT

A diffusive gradient in thin films (DGT) technique for measuring methylmercury (MeHg) concentrations in natural waters was developed using 3-mercaptopropyl-functionalized silica gel to preconcentrate the methylmercury. The new resin was characterized and calibrated. Methylmercury is efficiently accumulated at a pH range of 3-9. Basic performance tests of the new DGT device confirmed the applicability of Fick's first law for such DGT measurements. The diffusion coefficient of methylmercury in polyacrylamide gel was 5 x 10(-6) cm(2) s(-1). Methylmercury concentrations determined by DGT deployed for different time periods in the field are statistically not different from results obtained through direct measurements. The DGT technique represents therefore an alternative in situ sampling method for methylmercury. The detection limit of the overall method is 1 pg of MeHg, which correspond to approximately 30 pg L(-1) of MeHg in a water sample, when deploying a typical DGT device for 24 hours. Lower MeHg concentrations are measurable using longer deployment times or thinner diffusive gel layers.


Subject(s)
Environmental Monitoring/methods , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis , Acrylic Resins/chemistry , Diffusion , Environmental Monitoring/instrumentation , Hydrogen-Ion Concentration , Methylmercury Compounds/chemistry , Silica Gel , Silicon Dioxide/chemistry , Sulfhydryl Compounds/chemistry , Water Pollutants, Chemical/chemistry
8.
Mar Pollut Bull ; 49(3): 163-73, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15245981

ABSTRACT

A seasonal field study was carried out in the Seine estuary to determine the chemistry of sediment porewaters using the 'peeper' technique and changes in the elevation of the mudflats using the 'Altus' technique. This approach allowed us to evaluate the release of nutrients and to link these releases to the sediment hydrodynamics. Our results show that nutrient and organic matter cycling in a Seine estuary mudflat exhibits a seasonal behaviour, which is mainly influenced by variations in hydrodynamics. Sediments, rich organic matter, were input during floods and they were mineralized during summer and autumn, releasing nutrients and dissolved organic carbon into the sediment porewaters. The nutrient release, including ammonium, is mainly linked to the mineralization of organic matter, while the release of phosphate is delayed. The delay could be the result of phosphate association with organic matter and/or its co-precipitation with calcium and iron.


Subject(s)
Geologic Sediments/chemistry , Nitrogen/analysis , Phosphorus/analysis , Rivers , Ecosystem , Environmental Monitoring , France , Organic Chemicals/analysis , Porosity , Seasons , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...