Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Behav Neurosci ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635177

ABSTRACT

Prenatal alcohol exposure can produce disruptions in a wide range of cognitive functions, but it is especially detrimental to spatial navigation. In open environments, rodents organize their spatial behaviors around centralized locations, termed home bases, from which they make circuitous and slow locomotor trips (progressions) into the rest of the environment. Open-field behaviors are organized even under darkened test conditions, suggesting a role for self-motion cues (vestibular, motor, etc.). The impact of moderate prenatal alcohol exposure (mPAE) on the organization of spontaneous open-field behaviors under darkened conditions has not been investigated. Here we tested adult female and male rats with mPAE or saccharin control exposure in a circular open field for 30 min in a testing room that was made completely dark. While general locomotion, as measured by reductions in travel distance and increased stop duration, decreased across the test session, the organization of these behaviors, as measured by stop duration, home base establishment, home base stability, progression accuracy, and scaling of peak speeds with progression length, did not differ between mPAE and saccharin control rats. Together, the findings strongly suggest that spontaneous movement organization in relation to self-motion cues remains intact in adult mPAE rats. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

2.
Chem Res Toxicol ; 37(4): 643-657, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38556765

ABSTRACT

Organophosphorus (OP) nerve agents inhibit acetylcholinesterase (AChE), creating a cholinergic crisis in which death can occur. The phosphylated serine residue spontaneously dealkylates to the OP-aged form, which current therapeutics cannot reverse. Soman's aging half-life is 4.2 min, so immediate recovery (resurrection) of OP-aged AChE is needed. In 2018, we showed pyridin-3-ol-based quinone methide precursors (QMPs) can resurrect OP-aged electric eel AChE in vitro, achieving 2% resurrection after 24 h of incubation (pH 7, 4 mM). We prepared 50 unique 6-alkoxypyridin-3-ol QMPs with 10 alkoxy groups and five amine leaving groups to improve AChE resurrection. These compounds are predicted in silico to cross the blood-brain barrier and treat AChE in the central nervous system. This library resurrected 7.9% activity of OP-aged recombinant human AChE after 24 h at 250 µM, a 4-fold increase from our 2018 report. The best QMP (1b), with a 6-methoxypyridin-3-ol core and a diethylamine leaving group, recovered 20.8% (1 mM), 34% (4 mM), and 42.5% (predicted maximum) of methylphosphonate-aged AChE activity over 24 h. Seven QMPs recovered activity from AChE aged with Soman and a VX degradation product (EA-2192). We hypothesize that QMPs form the quinone methide (QM) to realkylate the phosphylated serine residue as the first step of resurrection. We calculated thermodynamic energetics for QM formation, but there was no trend with the experimental biochemical data. Molecular docking studies revealed that QMP binding to OP-aged AChE is not the determining factor for the observed biochemical trends; thus, QM formation may be enzyme-mediated.


Subject(s)
Cholinesterase Reactivators , Indolequinones , Organophosphate Poisoning , Soman , Humans , Aged , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/metabolism , Serine , Oximes , Cholinesterase Reactivators/chemistry
3.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38586000

ABSTRACT

Time-correlated single photon counting (TCSPC) coupled with confocal microscopy is a versatile biophysical tool that enables real-time monitoring of biomolecular dynamics across many timescales. With TCSPC, Fluorescence correlation spectroscopy (FCS) and pulsed interleaved excitation-Förster resonance energy transfer (PIE-FRET) are collected simultaneously on diffusing molecules to extract diffusion characteristics and proximity information. This article is a guide to calibrating FCS and PIE-FRET measurements with several biological samples including liposomes, streptavidin-coated quantum dots, proteins, and nucleic acids for reliable determination of diffusion coefficients and FRET efficiency. The FRET efficiency results are also compared to surface-attached single molecules using fluorescence lifetime imaging microscopy (FLIM-FRET). Combining the methods is a powerful approach to revealing mechanistic details of biological processes and pathways.

4.
Emerg Med Australas ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451003

ABSTRACT

OBJECTIVE: To reduce perceived unnecessary resource use, we modified our tiered trauma response. If a patient was not physiologically compromised, surgical registrar attendance was not mandated. We investigated the effect of this change on missed injury, unplanned representation to ED, diagnostic imaging rates and staff satisfaction. METHODS: A retrospective case series study assessing the 3-month period before and after the intervention was conducted. Logistic regression analyses were used to examine the association between ordering of computerised tomography (CT) and ED length of stay (LOS), injury severity (ISS), age, surgical review and admission. A staff survey was conducted to investigate staff perceptions of the practice change. Free text data were analysed using inductive content analysis. RESULTS: There were 105 patients in the control and 166 in the intervention group and their mean (SD) ISS was the same (ISS [SD] = 4 [±4] [P = 0.608]). A higher proportion of the control group were admitted (56.3% vs 42.2% [P = 0.032]) and they had a shorter ED LOS (274 min [202-456] vs 326 min [225-560], P = 0.044). The rate of missed injury was unchanged. A surgical review resulted in a 26-fold increase in receipt of a whole-body CT scan (odds ratio = 26.89, 95% confidence interval = 3.31-218.17). Just over half of survey respondents felt the change was safe (54.4%), and more surgical (90%) than ED staff (69%) reported the change as positive. CONCLUSION: The removal of the surgical registrar from the initial trauma standby response did not result in any adverse events, reduced admissions, pathology and imaging, but resulted in an increased ED LOS and time to surgical review.

5.
Toxicol Sci ; 199(2): 203-209, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38521541

ABSTRACT

Drug-induced liver injury (DILI) is a challenge in clinical medicine and drug development. Highly sensitive novel biomarkers have been identified for detecting DILI following a paracetamol overdose. The study objective was to evaluate biomarker performance in a 14-day trial of therapeutic dose paracetamol. The PATH-BP trial was a double-blind, placebo-controlled, crossover study. Individuals (n = 110) were randomized to receive 1 g paracetamol 4× daily or matched placebo for 2 weeks followed by a 2-week washout before crossing over to the alternate treatment. Blood was collected on days 0 (baseline), 4, 7, and 14 in both arms. Alanine transaminase (ALT) activity was measured in all patients. MicroRNA-122 (miR-122), cytokeratin-18 (K18), and glutamate dehydrogenase (GLDH) were measured in patients who had an elevated ALT on paracetamol treatment (≥50% from baseline). ALT increased in 49 individuals (45%). All 3 biomarkers were increased at the time of peak ALT (K18 paracetamol arm: 18.9 ± 9.7 ng/ml, placebo arm: 11.1 ± 5.4 ng/ml, ROC-AUC = 0.80, 95% CI 0.71-0.89; miR-122: 15.1 ± 12.9fM V 4.9 ± 4.7fM, ROC-AUC = 0.83, 0.75-0.91; and GLDH: 24.6 ± 31.1U/l V 12.0 ± 11.8U/l, ROC-AUC = 0.66, 0.49-0.83). All biomarkers were correlated with ALT (K18 r = 0.68, miR-122 r = 0.67, GLDH r = 0.60). To assess sensitivity, biomarker performance was analyzed on the visit preceding peak ALT (mean 3 days earlier). K18 identified the subsequent ALT increase (K18 ROC-AUC = 0.70, 0.59-0.80; miR-122 ROC-AUC = 0.60, 0.49-0.72, ALT ROC-AUC = 0.59, 0.48-0.70; GLDH ROC-AUC = 0.70, 0.50-0.90). Variability was lowest for ALT and K18. In conclusion, K18 was more sensitive than ALT, miR-122, or GLDH and has potential significant utility in the early identification of DILI in trials and clinical practice.


Subject(s)
Acetaminophen , Alanine Transaminase , Biomarkers , Chemical and Drug Induced Liver Injury , Cross-Over Studies , Keratin-18 , Humans , Alanine Transaminase/blood , Biomarkers/blood , Male , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/etiology , Female , Double-Blind Method , Keratin-18/blood , Adult , Middle Aged , MicroRNAs/blood , Young Adult , Glutamate Dehydrogenase/blood , Analgesics, Non-Narcotic
6.
J Nat Prod ; 87(2): 388-395, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38319739

ABSTRACT

The bacillamides are a class of indole alkaloids produced by the Bacillus genus that possess significant antialgal activity. Incorporation of fluorine into the bacillamides was carried out using a precursor-directed biosynthesis approach, with 4-, 5-, and 6-fluorotryptophan added to growing cultures of Bacillus atrophaeus IMG-11. This yielded the corresponding fluorinated analogues of bacillamides A and C, in addition to new derivatives of the related metabolite N-acetyltryptamine, thus demonstrating a degree of plasticity in the bacillamide biosynthetic pathway. The bacillamide derivatives were tested for activity against bloom-forming algae, which revealed that fluorination could improve the antialgal activity of these compounds in a site-specific manner, with fluorination at the 6-position consistently resulting in improved activity.


Subject(s)
Bacillus , Thiazoles , Tryptamines , Bacillus/metabolism , Tryptamines/chemistry , Thiazoles/chemistry , Halogenation
7.
Hippocampus ; 34(4): 168-196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38178693

ABSTRACT

Head direction (HD) cells, which fire persistently when an animal's head is pointed in a particular direction, are widely thought to underlie an animal's sense of spatial orientation and have been identified in several limbic brain regions. Robust HD cell firing is observed throughout the thalamo-parahippocampal system, although recent studies report that parahippocampal HD cells exhibit distinct firing properties, including conjunctive aspects with other spatial parameters, which suggest they play a specialized role in spatial processing. Few studies, however, have quantified these apparent differences. Here, we performed a comparative assessment of HD cell firing characteristics across the anterior dorsal thalamus (ADN), postsubiculum (PoS), parasubiculum (PaS), medial entorhinal (MEC), and postrhinal (POR) cortices. We report that HD cells with a high degree of directional specificity were observed in all five brain regions, but ADN HD cells display greater sharpness and stability in their preferred directions, and greater anticipation of future headings compared to parahippocampal regions. Additional analysis indicated that POR HD cells were more coarsely modulated by other spatial parameters compared to PoS, PaS, and MEC. Finally, our analyses indicated that the sharpness of HD tuning decreased as a function of laminar position and conjunctive coding within the PoS, PaS, and MEC, with cells in the superficial layers along with conjunctive firing properties showing less robust directional tuning. The results are discussed in relation to theories of functional organization of HD cell tuning in thalamo-parahippocampal circuitry.


Subject(s)
Anterior Thalamic Nuclei , Parahippocampal Gyrus , Animals , Parahippocampal Gyrus/physiology , Cerebral Cortex , Space Perception , Head/physiology
8.
Front Aging Neurosci ; 15: 1251075, 2023.
Article in English | MEDLINE | ID: mdl-38076543

ABSTRACT

Dementia remains one of the leading causes of morbidity and mortality in older adults. Alzheimer's disease (AD) is the most common type of dementia, affecting over 55 million people worldwide. AD is characterized by distinct neurobiological changes, including amyloid-beta protein deposits and tau neurofibrillary tangles, which cause cognitive decline and subsequent behavioral changes, such as distress, insomnia, depression, and anxiety. Recent literature suggests a strong connection between stress systems and AD progression. This presents a promising direction for future AD research. In this review, two systems involved in regulating stress and AD pathogenesis will be highlighted: serotonin (5-HT) and corticotropin releasing factor (CRF). Throughout the review, we summarize critical findings in the field while discussing common limitations with two animal models (3xTg-AD and TgF344-AD), novel pharmacotherapies, and potential early-intervention treatment options. We conclude by highlighting promising future pharmacotherapies and translational animal models of AD and anxiety.

9.
J Clin Invest ; 133(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37966111

ABSTRACT

Prostate cancer is generally considered an immunologically "cold" tumor type that is insensitive to immunotherapy. Targeting surface antigens on tumors through cellular therapy can induce a potent antitumor immune response to "heat up" the tumor microenvironment. However, many antigens expressed on prostate tumor cells are also found on normal tissues, potentially causing on-target, off-tumor toxicities and a suboptimal therapeutic index. Our studies revealed that six-transmembrane epithelial antigen of prostate-2 (STEAP2) was a prevalent prostate cancer antigen that displayed high, homogeneous cell surface expression across all stages of disease with limited distal normal tissue expression, making it ideal for therapeutic targeting. A multifaceted lead generation approach enabled development of an armored STEAP2 chimeric antigen receptor T cell (CAR-T) therapeutic candidate, AZD0754. This CAR-T product was armored with a dominant-negative TGF-ß type II receptor, bolstering its activity in the TGF-ß-rich immunosuppressive environment of prostate cancer. AZD0754 demonstrated potent and specific cytotoxicity against antigen-expressing cells in vitro despite TGF-ß-rich conditions. Further, AZD0754 enforced robust, dose-dependent in vivo efficacy in STEAP2-expressing cancer cell line-derived and patient-derived xenograft mouse models, and exhibited encouraging preclinical safety. Together, these data underscore the therapeutic tractability of STEAP2 in prostate cancer as well as build confidence in the specificity, potency, and tolerability of this potentially first-in-class CAR-T therapy.


Subject(s)
Prostatic Neoplasms , Receptors, Chimeric Antigen , Male , Humans , Mice , Animals , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive , Prostatic Neoplasms/pathology , T-Lymphocytes , Transforming Growth Factor beta/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Tumor Microenvironment , Oxidoreductases/metabolism
10.
J Nat Prod ; 86(11): 2502-2513, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37939299

ABSTRACT

2-Alkylquinolones are a class of microbial natural products primarily produced in the Pseudomonas and Burkholderia genera that play a key role in modulating quorum sensing. Bacterial alkylquinolones were synthesized and then subjected to oxidative biotransformation using human cytochrome P450 enzyme CYP4F11, heterologously expressed in the fission yeast Schizosaccharomyces pombe. This yielded a range of hydroxylated and carboxylic acid derivatives which had undergone ω-oxidation of the 2-alkyl chain, the structures of which were determined by analysis of NMR and MS data. Oxidation efficiency depended on chain length, with a chain length of eight or nine carbon atoms proving optimal for high yields. Homology modeling suggested that Glu233 was relevant for binding, due to the formation of a hydrogen bond from the quinolone nitrogen to Glu233, and in this position only the longer alkyl chains could come close enough to the heme moiety for effective oxidation. In addition to the direct oxidation products, a number of esters were also isolated, which was attributed to the action of endogenous yeast enzymes on the newly formed ω-hydroxy-alkylquinolones. ω-Oxidation of the alkyl chain significantly reduced the antimicrobial and antibiofilm activity of the quinolones.


Subject(s)
Bacteria , Cytochrome P-450 Enzyme System , Humans , Oxidation-Reduction , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P450 Family 4/metabolism
11.
eNeuro ; 10(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37989581

ABSTRACT

Spatial cognition research requires behavioral paradigms that can distinguish between different navigational elements, such as allocentric (map-like) navigation and egocentric (e.g., body centered) navigation. To fill this need, we developed a flexible experimental platform that can be quickly modified without the need for significant changes to software and hardware. In this paper, we present this inexpensive and flexible behavioral platform paired with software which we are making freely available. Our behavioral platform serves as the foundation for a range of experiments, and although developed for assessing spatial cognition, it also has applications in the nonspatial domain of behavioral testing. There are two components of the software platform, "Maze" and "Stim Trigger." While intended as a general platform, presently both programs can work in conjunction with Neuralynx and Open Ephys electrophysiology acquisition systems, allowing for precise time stamping of neural events. The Maze program includes functionality for automatic reward delivery based on user defined zones. "Stim Trigger" permits control of brain stimulation via any equipment that can be paired with an Arduino board. We seek to share our software and leverage the potential by expanding functionality in the future to meet the needs of a larger community of researchers.


Subject(s)
Software , Spatial Navigation , Cognition , Electrophysiological Phenomena , Electrophysiology , Spatial Navigation/physiology
12.
Hippocampus ; 33(12): 1252-1266, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37811797

ABSTRACT

The anterior and lateral thalamus (ALT) contains head direction cells that signal the directional orientation of an individual within the environment. ALT has direct and indirect connections with the parietal cortex (PC), an area hypothesized to play a role in coordinating viewer-dependent and viewer-independent spatial reference frames. This coordination between reference frames would allow an individual to translate movements toward a desired location from memory. Thus, ALT-PC functional connectivity would be critical for moving toward remembered allocentric locations. This hypothesis was tested in rats with a place-action task that requires associating an appropriate action (left or right turn) with a spatial location. There are four arms, each offset by 90°, positioned around a central starting point. A trial begins in the central starting point. After exiting a pseudorandomly selected arm, the rat had to displace the correct object covering one of two (left versus right) feeding stations to receive a reward. For a pair of arms facing opposite directions, the reward was located on the left, and for the other pair, the reward was located on the right. Thus, each reward location had a different combination of allocentric location and egocentric action. Removal of an object was scored as correct or incorrect. Trials in which the rat did not displace any objects were scored as "no selection" trials. After an object was removed, the rat returned to the center starting position and the maze was reset for the next trial. To investigate the role of the ALT-PC network, muscimol inactivation infusions targeted bilateral PC, bilateral ALT, or the ALT-PC network. Muscimol sessions were counterbalanced and compared to saline sessions within the same animal. All inactivations resulted in decreased accuracy, but only bilateral PC inactivations resulted in increased non selecting, increased errors, and longer latency responses on the remaining trials. Thus, the ALT-PC circuit is critical for linking an action with a spatial location for successful navigation.


Subject(s)
Parietal Lobe , Space Perception , Rats , Animals , Muscimol/pharmacology , Parietal Lobe/physiology , Reaction Time/physiology , Space Perception/physiology
13.
World J Orthop ; 14(8): 589-597, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37662663

ABSTRACT

Periprosthetic joint infection (PJI) is a rare but terrible complication in hip and knee arthroplasty, and the use of topical vancomycin powder (VP) has been investigated as a tool to potentially reduce its incidence. However, there remains no consensus on its efficacy. Therefore, the aim of this review is to provide an overview on the application of topical vancomycin in orthopaedic surgery focusing on the recent evidence and results in total joint arthroplasty. Several systematic reviews and meta-analyses on topical VP in hip and knee arthroplasty have been recently published reporting sometimes conflicting results. Apart from all being limited by the quality of the included studies (mostly level III and IV), confounding variables are often included potentially leading to biased conclusions. If taken into consideration the exclusive use of VP in isolation, the available data, although very limited, suggest that it does not reduce the infection rate in routine primary hip and knee arthroplasty. Therefore, we still cannot advise for a routinary application. A properly powered randomized-controlled trial would be necessary to clarify the role of VP in hip and knee arthroplasty. Based on the analysis of the current evidence, the use of topical VP appears to be safe when used locally in terms of systemic adverse reactions, hence, if proven to be effective, it could bring great benefits due to its low cost and accessibility.

14.
PLoS Biol ; 21(4): e3002030, 2023 04.
Article in English | MEDLINE | ID: mdl-37053235

ABSTRACT

Autophagy is essential for cellular homeostasis and function. In neurons, autophagosome biogenesis is temporally and spatially regulated to occur near presynaptic sites, in part via the trafficking of autophagy transmembrane protein ATG-9. The molecules that regulate autophagy by sorting ATG-9 at synapses remain largely unknown. Here, we conduct forward genetic screens at single synapses of C. elegans neurons and identify a role for the long isoform of the active zone protein Clarinet (CLA-1L) in regulating sorting of autophagy protein ATG-9 at synapses, and presynaptic autophagy. We determine that disrupting CLA-1L results in abnormal accumulation of ATG-9 containing vesicles enriched with clathrin. The ATG-9 phenotype in cla-1(L) mutants is not observed for other synaptic vesicle proteins, suggesting distinct mechanisms that regulate sorting of ATG-9-containing vesicles and synaptic vesicles. Through genetic analyses, we uncover the adaptor protein complexes that genetically interact with CLA-1 in ATG-9 sorting. We also determine that CLA-1L extends from the active zone to the periactive zone and genetically interacts with periactive zone proteins in ATG-9 sorting. Our findings reveal novel roles for active zone proteins in the sorting of ATG-9 and in presynaptic autophagy.


Subject(s)
Autophagy , Caenorhabditis elegans , Animals , Autophagy/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Neurons/metabolism , Presynaptic Terminals/metabolism , Protein Transport , Synapses/metabolism
15.
Biosensors (Basel) ; 13(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36831917

ABSTRACT

The identification of protein aggregates as biomarkers for neurodegeneration is an area of interest for disease diagnosis and treatment development. In this work, we present novel super luminescent conjugated polyelectrolyte molecules as ex vivo sensors for tau-paired helical filaments (PHFs) and amyloid-ß (Aß) plaques. We evaluated the use of two oligo-p-phenylene ethynylenes (OPEs), anionic OPE12- and cationic OPE24+, as stains for fibrillar protein pathology in brain sections of transgenic mouse (rTg4510) and rat (TgF344-AD) models of Alzheimer's disease (AD) tauopathy, and post-mortem brain sections from human frontotemporal dementia (FTD). OPE12- displayed selectivity for PHFs in fluorimetry assays and strong staining of neurofibrillary tangles (NFTs) in mouse and human brain tissue sections, while OPE24+ stained both NFTs and Aß plaques. Both OPEs stained the brain sections with limited background or non-specific staining. This novel family of sensors outperformed the gold-standard dye Thioflavin T in sensing capacities and co-stained with conventional phosphorylated tau (AT180) and Aß (4G8) antibodies. As the OPEs readily bind protein amyloids in vitro and ex vivo, they are selective and rapid tools for identifying proteopathic inclusions relevant to AD. Such OPEs can be useful in understanding pathogenesis and in creating in vivo diagnostically relevant detection tools for neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Neurofibrillary Tangles , Mice , Humans , Rats , Animals , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Plaque, Amyloid , tau Proteins , Alzheimer Disease/diagnosis , Brain/metabolism , Amyloid beta-Peptides , Staining and Labeling , Ethylenes/metabolism
16.
Vaccines (Basel) ; 11(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36851264

ABSTRACT

We evaluated four DNA vaccine candidates for their ability to produce virus-like particles (VLPs) and elicit a protective immune response against Foot-and-mouth disease virus (FMDV) in cattle. Two traditional DNA plasmids and two DNA minicircle constructs were evaluated. Both the pTarget O1P1-3C plasmid and O1P1-3C minicircle encoded a wild-type FMDV 3C protease to process the P1-2A polypeptide, whereas the O1P1-HIV-3CT minicircle used an HIV-1 ribosomal frameshift to down-regulate expression of a mutant 3C protease. A modified pTarget plasmid with a reduced backbone size, mpTarget O1P1-3CLT, used a 3C protease containing two mutations reported to enhance expression. All constructs produced mature FMDV P1 cleavage products in transfected cells, as seen by western blot analysis. Three constructs, O1P1-3C minicircles, pTarget O1P1-3C, and mpTarget O1P1-3CLT plasmids, produced intracellular VLP crystalline arrays detected by electron microscopy. Despite VLP formation in vitro, none of the DNA vaccine candidates elicited protection from clinical disease when administered independently. Administration of pTarget O1P1-3C plasmid enhanced neutralizing antibody titers when used as a priming dose prior to administration of a conditionally licensed adenovirus-vectored FMD vaccine. Further work is needed to develop these DNA plasmid-based constructs into standalone FMD vaccines in cattle.

17.
Bioorg Chem ; 131: 106330, 2023 02.
Article in English | MEDLINE | ID: mdl-36565673

ABSTRACT

Cytochrome P450 enzymes (CYPs) are one of the most important classes of oxidative enzymes in the human body, carrying out metabolism of various exogenous and endogenous substrates. In order to expand the knowledge of these enzymes' specificity and to obtain new natural product derivatives, CYP4F11, a cytochrome P450 monooxygenase, was used in the biotransformation of dialkylresorcinols 1 and 2, a pair of antibiotic microbial natural products. This investigation resulted in four biotransformation products including two oxidative products: a hydroxylated derivative (3) and a carboxylic acid derivative (4). In addition, acetylated (5) and esterified products (6) were isolated, formed by further metabolism by endogenous yeast enzymes. Oxidative transformations were highly regioselective, and took place exclusively at the ω-position of the C-5 alkyl chain. Homology modeling studies revealed that optimal hydrogen bonding between 2 and the enzyme can only be established with the C-5 alkyl chain pointing towards the heme. The closely-related CYP4F12 was not capable of oxidizing the dialkylresorcinol 2. Modeling experiments rationalize these differences by the different shapes of the binding pockets with respect to the non-oxidized alkyl chain. Antimicrobial testing indicated that the presence of polar groups on the side-chains reduces the antibiotic activity of the dialkylresorcinols.


Subject(s)
Anti-Bacterial Agents , Cytochrome P-450 Enzyme System , Resorcinols , Humans , Anti-Bacterial Agents/metabolism , Biotransformation , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Resorcinols/metabolism
18.
J Nat Prod ; 85(11): 2603-2609, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36327116

ABSTRACT

The secondary metabolite pseudopyronine B, isolated from Pseudomonas mosselii P33, was biotransformed by human P450 enzymes, heterologously expressed in the fission yeast Schizosaccharomyces pombe. Small-scale studies confirmed that both CYP4F2 and CYP4F3A were capable of oxidizing the substrate, with the former achieving a higher yield. In larger-scale studies using CYP4F2, three new oxidation products were obtained, the structures of which were elucidated by UV-vis, 1D and 2D NMR, and HR-MS spectroscopy. These corresponded to hydroxylated, carboxylated, and ester derivatives (1-3) of pseudopyronine B, all of which had been oxidized exclusively at the ω-position of the C-6 alkyl chain. In silico homology modeling experiments highlighted key interactions between oxygen atoms of the pyrone ring and two serine residues and a histidine residue of CYP4F2, which hold the substrate in a suitable orientation for oxidation at the terminus of the C-6 alkyl chain. Additional modeling studies with all three pseudopyronines revealed that the seven-carbon alkyl chain of pseudopyronine B was the perfect length for oxidation, with the terminal carbon lying close to the heme iron. The antibacterial activity of the substrates and three oxidation products was also assessed, revealing that oxidation at the ω-position removes all antimicrobial activity. This study both increases the range of known substrates for human CYF4F2 and CYP4F3A enzymes and demonstrates their utility in producing additional natural product derivatives.


Subject(s)
Anti-Bacterial Agents , Cytochrome P-450 Enzyme System , Pyrones , Humans , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Biotransformation , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P450 Family 4/metabolism , Hydroxylation , Oxidation-Reduction , Pyrones/chemistry , Pyrones/metabolism , Pyrones/pharmacology , Schizosaccharomyces/enzymology
19.
Antibiotics (Basel) ; 11(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36421300

ABSTRACT

The emergence of drug resistant microbes over recent decades represents one of the greatest threats to human health; the resilience of many of these organisms can be attributed to their ability to produce biofilms. Natural products have played a crucial role in drug discovery, with microbial natural products in particular proving a rich and diverse source of antimicrobial agents. During antimicrobial activity screening, the strain Pseudomonas mosselii P33 was found to inhibit the growth of multiple pathogens. Following chemical investigation of this strain, pseudopyronines A-C were isolated as the main active principles, with all three pseudopyronines showing outstanding activity against Staphylococcus aureus. The analogue pseudopyronine C, which has not been well-characterized previously, displayed sub-micromolar activity against S. aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. Moreover, the inhibitory abilities of the pseudopyronines against the biofilms of S. aureus were further studied. The results indicated all three pseudopyronines could directly reduce the growth of biofilm in both adhesion stage and maturation stage, displaying significant activity at micromolar concentrations.

20.
J Bone Jt Infect ; 7(5): 203-211, 2022.
Article in English | MEDLINE | ID: mdl-36267263

ABSTRACT

Introduction: Culture-negative (CN) prosthetic joint infections (PJIs) account for approximately 10 % of all PJIs and present significant challenges for clinicians. We aimed to explore the significance of CN PJIs within a large prospective cohort study, comparing their characteristics and outcomes with culture-positive (CP) cases. Methods: The Prosthetic joint Infection in Australia and New Zealand Observational (PIANO) study is a prospective, multicentre observational cohort study that was conducted at 27 hospitals between 2014 and 2017. We compared baseline characteristics and outcomes of all patients with CN PJI from the PIANO cohort with those of CP cases. We report on PJI diagnostic criteria in the CN cohort and apply internationally recognized PJI diagnostic guidelines to determine optimal CN PJI detection methods. Results: Of the 650 patients with 24-month outcome data available, 55 (8.5 %) were CN and 595 were CP. Compared with the CP cohort, CN patients were more likely to be female (32 (58.2 %) vs. 245 (41.2 %); p   =  0.016), involve the shoulder joint (5 (9.1 %) vs. 16 (2.7 %); p   =  0.026), and have a lower mean C-reactive protein (142 mg L - 1 vs. 187 mg L - 1 ; p   =  0.016). Overall, outcomes were superior in CN patients, with culture negativity an independent predictor of treatment success at 24 months (adjusted odds ratio, aOR, of 3.78 and 95 %CI of 1.65-8.67). Suboptimal diagnostic sampling was common in both cohorts, with CN PJI case detection enhanced using the Infectious Diseases Society of America PJI diagnostic guidelines. Conclusions: Current PJI diagnostic guidelines vary substantially in their ability to detect CN PJI, with comprehensive diagnostic sampling necessary to achieve diagnostic certainty. Definitive surgical management strategies should be determined by careful assessment of infection type, rather than by culture status alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...