Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Orthop Res ; 41(12): 2756-2764, 2023 12.
Article in English | MEDLINE | ID: mdl-37203783

ABSTRACT

Effective treatment of orthopedic implant-associated infections (IAIs) remains a clinical challenge. The in vitro and in vivo studies presented herein evaluated the antimicrobial effects of applying cathodic voltage-controlled electrical stimulation (CVCES) to titanium implants inoculated with preformed bacterial biofilms of methicillin-resistant Staphylococcus aureus (MRSA). The in vitro studies showed that combining vancomycin therapy (500 µg/mL) with application of CVCES at -1.75 V (all voltages are with respect to Ag/AgCl unless otherwise stated) for 24 h resulted in 99.98% reduction in the coupon-associated MRSA colony-forming units (CFUs) (3.38 × 103 vs. 2.14 × 107 CFU/mL, p < 0.001) and a 99.97% reduction in the planktonic CFU (4.04 × 104 vs. 1.26 × 108 CFU/mL, p < 0.001) as compared with the no treatment control samples. The in vivo studies utilized a rodent model of MRSA IAIs and showed a combination of vancomycin therapy (150 mg/kg twice daily) with CVCES of -1.75 V for 24 h had significant reductions in the implant associated CFU (1.42 × 101 vs. 1.2 × 106 CFU/mL, p < 0.003) and bone CFU (5.29 × 101 vs. 4.48 × 106 CFU/mL, p < 0.003) as compared with the untreated control animals. Importantly, the combined 24 h CVCES and antibiotic treatments resulted in no implant-associated MRSA CFU enumerated in 83% of the animals (five out of six animals) and no bone-associated MRSA CFU enumerated in 50% of the animals (three out of six animals). Overall, the outcomes of this study have shown that extended duration CVCES therapy is an effective adjunctive therapy to eradicate IAIs.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Prosthesis-Related Infections , Staphylococcal Infections , Animals , Vancomycin/pharmacology , Vancomycin/therapeutic use , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Prosthesis-Related Infections/drug therapy , Prosthesis-Related Infections/microbiology , Electric Stimulation
2.
Biomed Eng Lett ; 10(1): 17-41, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32175128

ABSTRACT

Osseointegrated (OI) prosthetic limbs have been shown to provide an advantageous treatment option for amputees. In order for the OI prosthesis to be successful, the titanium implant must rapidly achieve and maintain proper integration with the bone tissue and remain free of infection. Electrochemical methods can be utilized to control and/or monitor the interfacial microenvironment where the titanium implant interacts with the biological system (host bone tissue or bacteria). This review will summarize the current understanding of how electrochemical modalities can influence bone tissue and bacteria with specific emphasis on applications where the metallic prosthesis itself can be utilized directly as a stimulating electrode for enhanced osseointegration and infection control. In addition, a summary of electrochemical impedance sensing techniques that could be used to potentially assess osseointegration and infection status of the metallic prosthesis is presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...