Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Nephrol ; 52(8): 684-690, 2021.
Article in English | MEDLINE | ID: mdl-34515037

ABSTRACT

INTRODUCTION: Recent literature highlights the clinical utility of genetic testing for patients with kidney disease. Genetic testing provides significant benefits for reproductive risk counseling, including the option of in vitro fertilization with preimplantation genetic testing for monogenic disease (PGT-M). PGT-M allows for a significant reduction in risk for a pregnancy affected with the familial disease. We aim to summarize our experience with PGT-M for genes with kidney involvement as either a primary or secondary feature of the disease. METHODS: All PGT-M tests performed by the reference laboratory between September 2010 and July 2020 were reviewed for clinical indication and cases for which the disease tested included a renal component. Each patient referred for PGT-M had an existing molecular genetic diagnosis themselves or in their family. Frequency of each condition, gene, inheritance pattern, and year over year increase in referral cases was analyzed. RESULTS: In the study cohort, the most common disease targeted was autosomal dominant polycystic kidney disease, caused by pathogenic variants in the PKD1 or PKD2 genes, which accounted for 16.5% (64/389) of cases. The 5 most common referral indications accounted for 51.9% (202/389) of the cases. Autosomal recessive inheritance accounted for 52.0% (26/50) of conditions for which PGT-M was performed. The number of PGT-M tests performed for conditions that included either primary or secondary kidney disease increased from 5 cases in 2010 to 47 cases in the 2020 study period. DISCUSSION/CONCLUSION: These data suggest that the pursuit of PGT-M by couples at risk for passing on conditions with a kidney component is common and has significantly increased since 2010. With this rising trend of patients undergoing PGT-M and the prerequisite of molecular genetic confirmation in the PGT-M process, this study underscores the importance of the reproductive component to a molecular genetic diagnosis for patients with kidney disease, especially as the accessibility of genetic testing and utilization by nephrologists grows.


Subject(s)
Genetic Testing , Kidney Diseases/diagnosis , Kidney Diseases/genetics , Adult , Humans , Laboratories, Clinical , Middle Aged , Preimplantation Diagnosis , Retrospective Studies , Young Adult
2.
Am J Med Genet A ; 161A(9): 2134-47, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23897863

ABSTRACT

This report describes an algorithm developed to predict the pathogenicity of copy number variants (CNVs) in large sample cohorts. CNVs (genomic deletions and duplications) are found in healthy individuals and in individuals with genetic diagnoses, and differentiation of these two classes of CNVs can be challenging and usually requires extensive manual curation. We have developed PECONPI, an algorithm to assess the pathogenicity of CNVs based on gene content and CNV frequency. This software was applied to a large cohort of patients with genetically heterogeneous non-syndromic hearing loss to score and rank each CNV based on its relative pathogenicity. Of 636 individuals tested, we identified the likely underlying etiology of the hearing loss in 14 (2%) of the patients (1 with a homozygous deletion, 7 with a deletion of a known hearing loss gene and a point mutation on the trans allele and 6 with a deletion larger than 1 Mb). We also identified two probands with smaller deletions encompassing genes that may be functionally related to their hearing loss. The ability of PECONPI to determine the pathogenicity of CNVs was tested on a second genetically heterogeneous cohort with congenital heart defects (CHDs). It successfully identified a likely etiology in 6 of 355 individuals (2%). We believe this tool is useful for researchers with large genetically heterogeneous cohorts to help identify known pathogenic causes and novel disease genes.


Subject(s)
Hearing Loss, Sensorineural/genetics , Software , DNA Copy Number Variations , Extracellular Matrix Proteins/genetics , Gene Deletion , Genomics/methods , Genotype , Heart Defects, Congenital/genetics , Humans , In Situ Hybridization, Fluorescence , Polymorphism, Single Nucleotide , Reproducibility of Results
3.
Am J Med Genet A ; 158A(8): 1848-56, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22740382

ABSTRACT

Cornelia de Lange Syndrome (CdLS) is a multisystem developmental disorder characterized by growth retardation, cognitive impairment, external and internal structural malformations, and characteristic facial features. Currently, there are no definitive prenatal screening measures that lead to the diagnosis of CdLS. In this study, documented prenatal findings in CdLS syndrome were analyzed towards the development of a prenatal profile predictive of CdLS. We reviewed 53 cases of CdLS (29 previously reported and 24 unreported) in which prenatal observations/findings were available. The review of these cases revealed a pattern of sonographic findings, including obvious associated structural defects, growth restriction, as well as a more subtle, but strikingly characteristic, facial profile, and suggestive of a recognizable prenatal ultrasonographic profile for CdLS. In addition, the maternal serum marker, PAPP-A, may be reduced and fetal nuchal translucency (NT) may be increased in some pregnancies when measured at an appropriate gestational age. In conclusion, CdLS can be prenatally diagnosed or readily ruled out in a family with a known mutation in a CdLS gene. The characteristic ultrasonographic profile may allow for prenatal diagnosis of CdLS in (1) subsequent pregnancies to a couple with a prior child with CdLS in whom a mutation has not been identified or (2) when there are unexplained pregnancy signs of fetal abnormality, such as oligo- or polyhydramnios, a low maternal serum PAPP-A level and/or increased NT, fetal growth retardation, or structural anomalies consistent with CdLS.


Subject(s)
De Lange Syndrome/diagnosis , Prenatal Diagnosis , De Lange Syndrome/physiopathology , Female , Humans , Pregnancy
4.
Am J Med Genet A ; 158A(6): 1481-5, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22581668

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a genetic disorder associated with delayed growth, intellectual disability, limb reduction defects, and characteristic facial features. Germline mosaicism has been a described mechanism for CdLS when there are several affected offspring of apparently unaffected parents. Presently, the recurrence risk for CdLS has been estimated to be as high as 1.5%; however, this figure may be an underrepresentation. We report on the molecularly defined germline mosaicism cases from a large CdLS database, representing the first large case series on germline mosaicism in CdLS. Of the 12 families, eight have been previously described; however, four have not. No one specific gene mutation, either in the NIPBL or the SMC1A gene, was associated with an increased risk for germline mosaicism. Suspected or confirmed cases of germline mosaicism in our database range from a conservative 3.4% up to 5.4% of our total cohort. In conclusion, the potential reproductive recurrence risk due to germline mosiacism should be addressed in prenatal counseling for all families who have had a previously affected pregnancy or child with CdLS.


Subject(s)
De Lange Syndrome/genetics , Mosaicism , Cell Cycle Proteins , Exons , Family , Female , Humans , Male , Mutation , Pedigree , Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...