Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
N Engl J Med ; 390(5): 432-441, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38294975

ABSTRACT

BACKGROUND: Hereditary angioedema is a rare genetic disease that leads to severe and unpredictable swelling attacks. NTLA-2002 is an in vivo gene-editing therapy based on clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9. NTLA-2002 targets the gene encoding kallikrein B1 (KLKB1), with the goal of lifelong control of angioedema attacks after a single dose. METHODS: In this phase 1 dose-escalation portion of a combined phase 1-2 trial of NTLA-2002 in adults with hereditary angioedema, we administered NTLA-2002 at a single dose of 25 mg, 50 mg, or 75 mg. The primary end points were the safety and side-effect profile of NTLA-2002 therapy. Secondary and exploratory end points included pharmacokinetics, pharmacodynamics, and clinical efficacy determined on the basis of investigator-confirmed angioedema attacks. RESULTS: Three patients received 25 mg of NTLA-2002, four received 50 mg, and three received 75 mg. At all dose levels, the most common adverse events were infusion-related reactions and fatigue. No dose-limiting toxic effects, serious adverse events, grade 3 or higher adverse events, or clinically important laboratory findings were observed after the administration of NTLA-2002. Dose-dependent reductions in the total plasma kallikrein protein level were observed between baseline and the latest assessment, with a mean percentage change of -67% in the 25-mg group, -84% in the 50-mg group, and -95% in the 75-mg group. The mean percentage change in the number of angioedema attacks per month between baseline and weeks 1 through 16 (primary observation period) was -91% in the 25-mg group, -97% in the 50-mg group, and -80% in the 75-mg group. Among all the patients, the mean percentage change in the number of angioedema attacks per month from baseline through the latest assessment was -95%. CONCLUSIONS: In this small study, a single dose of NTLA-2002 led to robust, dose-dependent, and durable reductions in total plasma kallikrein levels, and no severe adverse events were observed. In exploratory analyses, reductions in the number of angioedema attacks per month were observed at all dose levels. (Funded by Intellia Therapeutics; ClinicalTrials.gov number, NCT05120830.).


Subject(s)
Angioedemas, Hereditary , CRISPR-Cas Systems , Gene Editing , Adult , Humans , Angioedema , Angioedemas, Hereditary/blood , Angioedemas, Hereditary/drug therapy , Angioedemas, Hereditary/genetics , Complement C1 Inhibitor Protein/therapeutic use , Dose-Response Relationship, Drug , Gene Editing/methods , Plasma Kallikrein/genetics , Treatment Outcome
2.
Biomacromolecules ; 5(4): 1362-70, 2004.
Article in English | MEDLINE | ID: mdl-15244452

ABSTRACT

The formation of amyloid fibrils is an intractable problem in which normally soluble protein polymerizes and forms insoluble ordered aggregates. Such aggregates can range from being a nuisance in vitro to being toxic in vivo. The latter is true for lysozyme, which has been shown to form toxic deposits in humans. In the present study, the effects of partial denaturation of hen egg-white lysozyme via incubation in a concentrated solution of the denaturant guanidine hydrochloride are investigated. Results show that when lysozyme is incubated under moderate guanidine hydrochloride concentrations (i.e., 2-5 M), where lysozyme is partially unfolded, fibrils form rapidly. Thioflavin T, Congo red, X-ray diffraction, transmission electron microscopy, atomic force microscopy, and circular dichroism spectroscopy are all used to verify the production of fibrils under these conditions. Incubation at very low or very high guanidine hydrochloride concentrations fails to produce fibrils. At very low denaturant concentrations, the structure of lysozyme is fully native and very stable. On the other hand, at very high denaturant concentrations, guanidine hydrochloride is capable of dissolving and dis-aggregating fibrils that are formed. Raising the temperature and/or concentration of lysozyme accelerates fibril formation by further adding to the concentration of partially unfolded species. The addition of preformed fibrils also accelerates fibril formation but only under partially unfolding conditions. The results presented here provide further evidence that partial unfolding is a prerequisite to fibril formation. Partial denaturation can accelerate fibril formation in much the same way that mutations have been shown to accelerate fibril formation.


Subject(s)
Amyloid/chemistry , Amyloid/chemical synthesis , Guanidine/chemistry , Muramidase/chemistry , Animals , Chickens , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Polymers/chemistry , Protein Folding , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...