Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
F1000Res ; 11: 385, 2022.
Article in English | MEDLINE | ID: mdl-38680232

ABSTRACT

Background: Bovine congestive heart failure (BCHF) has become increasingly prevalent among feedlot cattle in the Western Great Plains of North America with up to 7% mortality in affected herds. BCHF is an untreatable complex condition involving pulmonary hypertension that culminates in right ventricular failure and death. Genes associated with BCHF in feedlot cattle have not been previously identified. Our aim was to search for genomic regions associated with this disease. Methods: A retrospective, matched case-control design with 102 clinical BCHF cases and their unaffected pen mates was used in a genome-wide association study. Paired nominal data from approximately 560,000 filtered single nucleotide polymorphisms (SNPs) were analyzed with McNemar's test. Results: Two independent genomic regions were identified as having the most significant association with BCHF: the arrestin domain-containing protein 3 gene ( ARRDC3), and the nuclear factor IA gene ( NFIA, mid- p-values, 1x10 -8 and 2x10 -7, respectively). Animals with two copies of risk alleles at either gene were approximately eight-fold more likely to have BCHF than their matched pen mates with either one or zero risk alleles at both genes (CI 95 = 3-17). Further, animals with two copies of risk alleles at both genes were 28-fold more likely to have BCHF than all others ( p-value = 1×10 -7, CI 95 = 4-206). A missense variant in ARRDC3 (C182Y) represents a potential functional variant since the C182 codon is conserved among all other jawed vertebrate species observed. A two-SNP test with markers in both genes showed 29% of 273 BCHF cases had homozygous risk genotypes in both genes, compared to 2.5% in 198 similar unaffected feedlot cattle. This and other DNA tests may be useful for identifying feedlot animals with the highest risk for BCHF in the environments described here. Conclusions: Although pathogenic roles for variants in the ARRDC3 and NFIA genes are unknown, their discovery facilitates classifying animals by genetic risk and allows cattle producers to make informed decisions for selective breeding and animal health management.


Subject(s)
Arrestins , Cattle Diseases , Genetic Predisposition to Disease , Heart Failure , NFI Transcription Factors , Animals , Cattle , Arrestins/genetics , Case-Control Studies , Cattle Diseases/genetics , Genome-Wide Association Study , Heart Failure/genetics , Heart Failure/veterinary , NFI Transcription Factors/genetics , Polymorphism, Single Nucleotide , Retrospective Studies
2.
F1000Res ; 8: 1189, 2019.
Article in English | MEDLINE | ID: mdl-31543958

ABSTRACT

Background:  Bovine congestive heart failure (BCHF) has become increasingly prevalent in feedlot cattle in the Western Great Plains of North America. BCHF is an untreatable complex condition involving pulmonary hypertension that culminates in right ventricular failure and death. A protein variant of hypoxia-inducible factor 2 alpha (HIF2α, encoded by the endothelial PAS domain-containing protein 1 gene, EPAS1) was previously reported to be associated with pulmonary hypertension at altitudes exceeding 2,000 m. Our aim was to evaluate EPAS1 haplotypes for association with BCHF in feedlot cattle raised at moderate altitudes (1,200 m). Methods: Paired samples of clinical cases and unaffected controls were collected at four feedlots in Nebraska and Wyoming. Each pair (n =102) was matched for source, pen, breed type, sex, arrival date, and management conditions. Cases were identified by animal caretakers, euthanized, and diagnosis was confirmed at necropsy. Cases were derived from 30 different ranch operations, with the largest source contributing 32. Animals were tested for eight EPAS1 haplotypes encoding 36 possible different diploid combinations. Results: The common, ancestral EPAS1 haplotype encoding HIF2α with alanine (A) at position 606 and glycine (G) at position 610 was equally frequent in cases and controls (0.67). The EPAS1 variant haplotype reported to be associated with disease (encoding threonine (T) at position 606 and serine (S) at position 610) was not enriched in cases compared with controls (0.21 and 0.25, respectively). Frequencies of other EPAS1 haplotypes (e.g., encoding Q270, L362, or G671) were each less than 0.05 overall. McNemar's test with 45 discordant pairs showed the linked T606/S610 variant was not associated with BCHF (OR = 0.73, CI 95 0.38 -1.4, p-value = 0.37). Conclusions: HIF2α polypeptide variants were not significantly associated with BCHF in feedlot cattle at moderate altitudes. Thus, a wider search is needed to identify genetic risk factors underlying this disease.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Heart Failure , Hypertension, Pulmonary , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cattle , Haplotypes , Heart Failure/genetics , Heart Failure/veterinary
3.
Prev Vet Med ; 101(1-2): 35-41, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21676476

ABSTRACT

The goal of this study was to evaluate the test sensitivity (SE) and specificity (SP) of the gamma interferon (G-IFN) assay used for the detection of bovine tuberculosis (bTB) in U.S. cattle herds. In addition, the study assessed the association between G-IFN test results and bTB status of cattle, and explored different cut off values for classification of test results in adult cattle using receiver operating characteristics (ROC) curve analysis. Test SE was estimated using a population of 87 confirmed infected cattle from 14 herds distributed in 6 states. Test SP was estimated using a population of 4123 cattle representing 3000 premises in 3 states. These animals were from bTB free areas, accredited bTB free herds, or herds that were historically bTB free based on the absence of lesions found at slaughter and historical records of negative tests performed for bTB surveillance. The distribution of G-IFN results and its association with bTB infection status was also explored in a group of 914 exposed cattle in which infection was not confirmed. The results showed that the SE of the G-IFN for a cut-off value ≥0.1 was 83.9% (76.1, 91.6). The SP of the G-IFN was 90.7% (95% CI: 89.8, 91.6), 97% (95% CI: 96.5, 97.5), and 98.6%(95% CI: 98.2, 98.9), for cut off values of 0.1, 0.3, and 0.5, respectively. For a cut off value ≥0.1, the likelihood ratio of a positive G-IFN test was 9.03 (95% CI: 7.90, 10.31), and the likelihood ratio of a negative G-IFN test was 0.18 (95% CI: 0.11, 0.29). The area under the ROC curve was 0.976 (95% CI: 0.97, 0.98), characteristic of a highly accurate test. ROC analysis also showed that lower cut-off values, such as 0.1, have high SE with suitable SP for use in parallel testing, while cut-off values ranging between 0.3 and 0.6 provide the high SP desired in series-testing protocols with lower SE values. Findings from this study indicated that the G-IFN performs with high accuracy in the field, yielding SE and SP estimates comparable to those reported in previous evaluations (Ryan et al., 2000; Ameni et al., 2000; de la Rua-Domenech et al., 2006; Gormley et al., 2006).


Subject(s)
Interferon-gamma/analysis , Mycobacterium bovis/immunology , Tuberculosis, Bovine/diagnosis , Animals , Autopsy/veterinary , Cattle , Likelihood Functions , ROC Curve , Sensitivity and Specificity , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...